• Title/Summary/Keyword: NADH:menadione oxidoreductase

Search Result 2, Processing Time 0.017 seconds

Properties of the Membrane-Bound NADH;Menadione Oxidoreductase in the Aerobic Respiratory Chain of Bacillus cereus (Bacillus cereus의 호기적 호흡쇄에 있어서 세포질막 내에 존재하는 NADH;menadione oxidoreductase의 특성)

  • Kang, Ji-Won;Kim, Young-Jae
    • Journal of Life Science
    • /
    • v.18 no.3
    • /
    • pp.418-421
    • /
    • 2008
  • Membranes prepared from Bacillus cereus KCTC 3674, grown aerobically on a complex medium, oxidized NADH exclusively, whereas deamino-NADH was little oxidized. The respiratory chain-linked NADH oxidase system exhibited an apparent $K_m$ value of approximately 65 ${\mu}M$ for NADH. On the other hand, the enzymatic properties of the NADH: menadione oxidoreductase of NADH oxidase system were examined. The maximum activity of NADH: menadione oxidoreductase was obtained at pH 9.5 in the presence of 0.1 M KCl (or NaCl). The NADH: menadione oxidoreductase activity was very resistant to the respiratory chain inhibitors such as rotenone, capsaicin, and $AgNO_3$. Interestingly, the activity was stimulated by the 2-heptyl-4-hydroxyquinoline-N-oxide (HQNO).

HQNO-sensitive NADH:Quinone Oxidoreductase of Bacillus cereus KCTC 3674

  • Kang, Ji-Won;Kim, Young-Jae
    • BMB Reports
    • /
    • v.40 no.1
    • /
    • pp.53-57
    • /
    • 2007
  • The enzymatic properties of NADH:quinone oxidoreductase were examined in Triton X-100 extracts of Bacillus cereus membranes by using the artificial electron acceptors ubiquinone-1 and menadione. Membranes were prepared from B. cereus KCTC 3674 grown aerobically on a complex medium and oxidized with NADH exclusively, whereas deamino-NADH was determined to be poorly oxidized. The NADH oxidase activity was lost completely by solubilization of the membranes with Triton X-100. However, by using the artificial electron acceptors ubiquinone-1 and menadione, NADH oxidation could be observed. The activities of NADH:ubiquinone-1 and NADH:menadione oxidoreductase were enhanced approximately 8-fold and 4-fold, respectively, from the Triton X-100 extracted membranes. The maximum activity of FAD-dependent NADH:ubiquinone-1 oxidoreductase was obtained at about pH 6.0 in the presence of 0.1M NaCl, while the maximum activity of FAD-dependent NADH:menadione oxidoreductase was obtained at about pH 8.0 in the presence of 0.1M NaCl. The activities of the NADH:ubiquinone-1 and NADH:menadione oxidoreductase were very resistant to such respiratory chain inhibitors as rotenone, capsaicin, and $AgNO_3$, whereas these activities were sensitive to 2-heptyl-4-hydroxyquinoline-N-oxide (HQNO). Based on these results, we suggest that the aerobic respiratory chain-linked NADH oxidase system of B. cereus KCTC 3674 possesses an HQNO-sensitive NADH:quinone oxidoreductase that lacks an energy coupling site containing FAD as a cofactor.