• 제목/요약/키워드: NAD(P)H:quinone reductase

검색결과 18건 처리시간 0.024초

Biochemical Properties of NAD(P)H-Quinone Oxidoreductase from Saccharomyces cerevisiae

  • Kim, Kyung-Soon;Suk, Hee-Won
    • BMB Reports
    • /
    • 제32권2호
    • /
    • pp.127-132
    • /
    • 1999
  • The NAD(P)H-quinone oxidoreductase (EC 1. 6. 99. 2) was purified from S. cerevisiae. The native molecular weight of the enzyme is approximately 111 kDa and is composed of five identical subunits with molecular weights of 22 kDa each. The optimum pH of the enzyme is pH 6.0 with 1,4-benzoquinone as a substrate. The apparent $k_m$ for 1,4-benzoquinone and 1,4- naphthoquinone are 1.3 mM and $14.3\;{\mu}M$, respectively. Its activity is greatly inhibited by $Cu^{2+}$ and $Hg^{2+}$ ions, nitrofurantoin, dicumarol, and Cibacron blue 3GA. The purified NAD(P)H-quinone oxidoreductase was found capable of reducing aromatic nitroso compounds as well as a variety of quinones, and can utilize either NADH or NADPH as a source of reducing equivalents. The nitroso reductase activity of the purified NAD(P)H-quinone oxidoreductase is strongly inhibited by dicumarol.

  • PDF

Potential Induction of Quinone Reductase Activity of Natural Products in Cultured Murine Hepa1c1c7 Cells

  • Heo, Yeon-Hoi;Lee, Sang-Kook
    • Natural Product Sciences
    • /
    • 제7권2호
    • /
    • pp.38-44
    • /
    • 2001
  • NAD(P)H:quinone reductase (QR), known as DT-diaphorase, is a kind of detoxifying phase II metabolic enzyme catalyzing hydroquinone formation by two electron reduction pathway from quinone type compounds, and thus facilitating excretion of quinoids from human body. With the usefulness of QR induction activity assay system for the modulation of toxicants, in the course of searching for cancer chemopreventive agents from natural products, the methanolic extracts of approximately two hundreds of oriental medicines were primarily evaluated using the induction potential of quinone reductase (QR) activity in cultured murine Hepa1c1c7 cells. As a result, several extracts including Hordeum vulgare, Momordica cochinchinensis, Strychnos ignatii, Houttuynia cordata, and Polygala japonica were found to significantly induce QR activity. In addition, the methylene chloride fraction of H. vulgare, one major dietary food source, showed potent induction of QR activity $(CD=6.4{\mu}g/ml)$. Further study for isolation of active principles from these lead extracts is warranted for the discovery of novel cancer chemopreventive agents.

  • PDF

Effects of Natural Products on the Induction of NAD(P)H: Quinone Reductase in Hepa 1c1c7 Cells for the Development of Cancer Chemopreventive Agents

  • Kim, Young-Mi;Chang, Il-Moo;Mar, Woong-Chon
    • Natural Product Sciences
    • /
    • 제3권2호
    • /
    • pp.81-88
    • /
    • 1997
  • NAD(P)H:quinone reductase (QR) is one of the protective phase II enzymes against toxicity that accomplishes the capacity of detoxification by modulating the effects of mutagens and carcinogens. The detoxification mechanism is that quinone reductase promotes the 2-electron reduction of quinones to hydroquinones which are less reactive. This study is to search new inducers of quinone reductase from natural products, which can be used as cancer chemopreventive agents. Plant extracts were evaluated by using quinone reductase generating system With Hepa 1c1c7 murine hepatoma cell lines for enzyme inducing properties and crystal violet staining method for the measurement of cytotoxicity provoked. We have tested approximately 106 kinds of natural products after partition into n-hexane, ethyl acetate and aqueous layers from 100% methanol extracts of natural products. The ethyl acetate fractions of Vitex rotundifolia $(fruits,\;2FC:\;12.7\;{\mu}g/ml)$, Cnidium officinale $(aerial\;parts,\;2FC:\;10.5\;{\mu}g/ml)$, Chrysanthemum sinese $(flowers,\;2FC:\;17.4{\mu}g/ml)$ and the hexane fractions of Angelica gigas $(roots,\;2FC:\;13.2\;{\mu}g/ml)$, Smilax china $(roots,\;2FC:\;l1.9\;{\mu}g/ml)$, Sophora flavescens $(roots,\;2FC:\;16.3\;{\mu}g/ml)$ revealed the significant induction of quinone reductase in a murine hepatic Hepa 1c1c7 cell culture system.

  • PDF

창이자 및 꿀풀하고초에 의한 NAD(P)H:quinone reductase와 glutathione S-transferase의 유도 (Induction of NAD(P)H:quinone reductase and glutathione S-transferase by Xanthii Fructus and Prunellae Spica Extracts)

  • 손윤희;이기택;박신화;조경희;임종국;남경수
    • 생약학회지
    • /
    • 제32권4호통권127호
    • /
    • pp.269-273
    • /
    • 2001
  • Ethanol extracts from Xanthii Fructus (XFE) and Prunellae Spica (PSE) were investigated for the effects on the induction of cancer chemoprevention-associated enzymes. The following effects were measured: (a) induction of quinone reductase (QR) (b) induction of glutathione S-transferase (GST) (c) reduced glutathione (GSH) level. XFE and PSE were potent inducers of quinone reductase activity in Hepa1c1c7 murine hepatoma cells. Glutathione levels were increased with XFE and PSE. In addition, glutathione S-transferase activity was increased with XFE. However, GST activity was not increased with PSE. These results suggest that XFE and PSE have chemopreventive potentials by inducing quinone reductase and increasing GSH levels.

  • PDF

Mouse hepatoma 세포를 이용한 농산부산물로부터 quinone reductase활성물질의 탐색 (Screening of Quinone Reductase Inducers from Agricultural Byproducts Using Mouse Hepatoma Cell Line)

  • 김정상;남영중;김주원
    • 한국식품과학회지
    • /
    • 제27권6호
    • /
    • pp.972-977
    • /
    • 1995
  • Quinone reductase(QR)를 포함한 2상효소계를 활성화시키는 성분들은 많은 동물실험에서 발암물질의 세포내 작용을 억제함으로서 항종양효과를 나타내는 것으로 보고되어 있다. 본 연구에서는 대표적인 농산부산물로서 미강, 밀기울, 탈지대두박, 두유박, 참깨박, 들깨박등 6종의 시료에 대한 암예방효과를 갖는 물질의 존재여부를 탐색하기 위하여, mouse hepatoma cell line(Hepalclc7 cells) 을 이용하여, quinone reductase활성유도 여부를 측정하였다. 참깨박과 들깨박의 80%메탄올 추출물은 0.5mg/ml 농도에서 강력한 QR 유도활성을 나타냈으며, 같은 농도에서 다른 시료들은 거의 QR 효소활성을 증가시키지 않았다. 한편 QR효소활성을 유도하는 성분을 찾아내기 위하여 일차적으로 TLC를 수행한 결과, 참깨박과 들깨박의 메탄올 추출물 가운데 사용한 전개용매(n-butanol : n-propanol : 2N ammonium hydroxide(10 : 60 : 30)에서 가장 빨리 이동하는 분획(Rf=0.70)이 유효성분을 함유하고 있음을 확인하였으며, 현재 활성성분의 동정이 진행중에 있다.

  • PDF

Purification and Properties of Quinone Reductase

  • 신해용;심승보;장미;박종옥;김경순
    • 한국생물공학회:학술대회논문집
    • /
    • 한국생물공학회 2000년도 추계학술발표대회 및 bio-venture fair
    • /
    • pp.638-639
    • /
    • 2000
  • Quinone reductase was purified to electrophoretic homogeneity from bovine liver by using ammonium sulfate fractionation, ion-exchange chromatography, and gel filtration chromatography. The enzyme utilized either NADH or NADPH as the electron donor. The optimum pH of the enzyme was pH 8.5, and the activity of the enzyme was greatly inhibited by $Cu^{2+}$ and $Hg^{2+}$ ions, dicumarol and cibacron blue 3GA. The enzyme catalyzed the reduction of several quinones and other artificial electron acceptors. Furthermore, the enzyme catalyzed NAD(P)H-dependent reduction of azobenzene or 4-nitroso-N,N-dimethylaniline. The apparent $K_m$ for 1,4-benzoquinone, azobenzene, and 4-nitroso-N,N-dimethylaniline was 1.64mM, 0.524mM and 0.225mM, respectively. The reduction of azobenzene or 4-nitroso-N,N-dimethylaniline by quinone reductase was strongly inhibited by dicumarol or cibacron blue 3GA, potent inhibitors of quinone reductase.

  • PDF

Reduction of Azobenzene by Purified Bovine Liver Quinone Reductase

  • Kim, Kyung-Soon;Shin, Hae-Yong
    • BMB Reports
    • /
    • 제33권4호
    • /
    • pp.321-325
    • /
    • 2000
  • Quinone reductase was purified to homogeneity from bovine liver by using ammonium sulfate fractionation, ionexchange chromatography, and gel filtration chromatography. The enzyme utilized either NADH or NADPH as the electron donor. The enzyme catalyzed the reduction of several quinones and other artificial electron acceptors. Furthermore, the enzyme catalyzed NAD(P)H-dependent reduction of azobenzene. The apparent Km for 1,4-benzoquinone and azobenzene was 1.64 mM and 0.524 mM, respectively. The reduction of azobenzene by quinone reductase was almost entirely inhibited by dicumarol or Cibacron blue 3GA, potent inhibitors of the mammalian quinone reductase. In the presence of 1.0${\mu}M$ Cibacron blue 3GA, azoreductase activity was lowered by 45%, and almost complete inhibition was seen above 2.0 ${\mu}M$ Cibacron blue 3GA.

  • PDF

황기(黃耆) 약침액(藥鍼液)의 Glutathione S-transferase 와 NAD(P)H: Quinone Reductase 유도 (Induction of Glutathione S-transferase and NAD(P)H:Quinone Reductase by Astragali Radix Aqua-acupuncture Solution)

  • 류준선;임종국
    • Korean Journal of Acupuncture
    • /
    • 제18권1호
    • /
    • pp.21-26
    • /
    • 2001
  • 발암물질을 무독화시키는 QR 생성 유도를 살펴보기 위하여 황기 약침액 및 열수추출액을 생쥐의 간암세포인 Hepa1c1c7에 처리하여 측정한 결과, 황기 약침액의 농도를 증가시킬수록 많은 QR 생성율을 보였으며, GSH 생성이 증가하였고, GST 생성 또한 증가하였다.

  • PDF

Induction of Quinone Reductase , an Anticarcinogenic Marker Enzyme, by Vitamin E in Both Hepalclc7 Cells and Mice

  • Kwon, Chong-Suk;Kim, Jong-Sang
    • Preventive Nutrition and Food Science
    • /
    • 제4권2호
    • /
    • pp.122-124
    • /
    • 1999
  • Induction of NAD(P)H : (quinone-acceptor) oxidoreductase (QR) which obligatory two electron reduction of quinones and prevents their participation in oxidative cycling and thereby the depletion of intracellular glutathione, has been used as a marker for chemopreventive agents. We postulated that vitamin E, an antioxidant, which induces QR as the gene of QR was reported to contain antioxidant reponsive element in the 5'-flanking region. Vitamin E resulted in significant induction of QR in both hepalclc7 cells and mouse tissues. QR induction was observed; to be maximal at 25uM vitamin E for hepalclc7 cells while it was maximal in the level of 2.5∼5 μmoles vitamin E/㎏ BW for mouse tissues. Thus the cancer-preventive effect of vitamin E may be exerted by it induction of intracellular detoxifying enzymes.

  • PDF

Induction of Quinone Reductase by Obtusafuran from Dalbergiae Lignum

  • Yin, Hu-Quan;Oh, Seon-Hee;Kim, Youn-Chul;Sohn, Dong-Hwan;Lee, Byung-Hoon
    • 대한약학회:학술대회논문집
    • /
    • 대한약학회 2003년도 Proceedings of the Convention of the Pharmaceutical Society of Korea Vol.1
    • /
    • pp.161.1-161.1
    • /
    • 2003
  • NAD(P)H:quinone oxidoreductase (quinone reductase: QR: EC1.6.99.2), a cytosolic FAD-containing flavoprotein, form one of the important component of the phase II drug-metabolizing enzyme systems. It is found in all mammalian species tested and is expressed in many organs including the liver. QR catalyses two-electron reduction of qui nones to hydroquinones thereby suppresses the formation of superoxide anion radical. (omitted)

  • PDF