• Title/Summary/Keyword: NACA 4412 익형

Search Result 15, Processing Time 0.024 seconds

2-DIMENSIONAL AERODYNAMIC SIMULATION ON THE GROUND EFFECT OF THE NACA 4412 AIRFOIL (NACA 4412 날개의 지면효과에 대한 2차원 공력 해석)

  • Kim, Y.;Lee, J.E.;Shin, M.S.;Kang, K.J.;Kwon, J.H.
    • 한국전산유체공학회:학술대회논문집
    • /
    • 2006.10a
    • /
    • pp.199-205
    • /
    • 2006
  • Two dimensional turbulent flow simulations on the low Mach number - high Reynolds number flow about the NACA 4412 airfoil are carried out as the airfoil approaches a ground. It has been turned out that angle of attack between 2 and 8 is recommended for the airfoil to utilize the benefit of ground effect. For the large angle of attack, the increment of lift due to the ground effect is eliminated and negative aerodynamic effect such as destabilizing aspect in static longitudinal stability are occurred as the airfoil approaches a ground.

  • PDF

Wake structure study around a NACA 4412 airfoil using EDISON CFD (EDISON CFD를 이용한 NACA 4412 익형의 후류 형상 연구)

  • Sim, Gyu-Ho;Jo, Hyeong-Gyu;Kim, Mun-Sang
    • Proceeding of EDISON Challenge
    • /
    • 2012.04a
    • /
    • pp.81-84
    • /
    • 2012
  • 항공기 설계에서 중요한 해석 대상중의 하나인 에어포일 NACA 4412 형상을 2차원 난류 점성유동으로 접근하여 일정 받음각에 따른 유동 현상을 실험 결과와 비교해 보았다. 또한, 역압력구배, 유동 박리, 와류 등의 현상이 어디에서 어떻게 생성되는지 해석을 통하여 분석해 보았다.

  • PDF

TURBULENT FLOW SIMULATION ON THE GROUND EFFECT ABOUT A 2-DIMENSIONAL AIRFOIL (2차원 날개 주위의 지면효과에 대한 난류 유동장 해석)

  • Kim, Y.S.;Lee, J.E.;Shin, M.S.;Kang, K.J.;Kwon, J.H.
    • Journal of computational fluids engineering
    • /
    • v.11 no.4 s.35
    • /
    • pp.81-89
    • /
    • 2006
  • Two dimensional turbulent flow simulations on the low Mach number - high Reynolds number flow about the NACA 4412 airfoil are carried out as the airfoil approaches a ground. It has turned out that angle of attack between 2 and 8 degrees is recommended for the airfoil to utilize the benefit of ground effect. For the large angle of attack, the increment of lift due to the ground effect is faded away and negative aerodynamic effect such as destabilizing aspect in static longitudinal stability occurs and the separation point moves to forward as the airfoil approaches a ground.

Study about aerodynamics effects of the trailing edge thickness of airfoils (2차원 익형의 뒷전 두께의 공력효과에 대한 분석)

  • Kim, Wang-Hyeon;Nam, Do-U;Kim, Byeong-Su
    • Proceeding of EDISON Challenge
    • /
    • 2014.03a
    • /
    • pp.562-567
    • /
    • 2014
  • 본 연구에서는 교육 및 연구를 위한 CFD 해석 프로그램인 EDISON_CFD를 이용하여 Symmetric airfoil(NACA0012)과 Cambered airfoil(NACA4412)의 뒷전 두께에 따른 공력 특성을 분석해보았다. Chord 길이의 0%, 1%, 2%, 3%, 4%에 해당하는 뒷전 두께를 가지는 Blunt trailing edge airfoil의 받음각에 따른 공력 특성을 비교 및 분석하고, 어떠한 장단점을 가지는지 확인하였다. 그 결과 Chord 길이의 1% 뒷전 두께를 가질 때를 제외하면 뒷전 두께가 두꺼워질수록 최대양력계수는 증가하였고, 양항비와 실속각은 감소하였다. 또한, 뒷전 두께가 두꺼워질수록 Symmetric airfoil에서는 받음각 $0^{\circ}$를 기준으로 양력곡선기울기가 증가하였고, Cambered airfoil에서는 전체적으로 양력계수가 증가함과 동시에 양력곡선기울기 또한 증가하는 것을 확인할 수 있었다.

  • PDF

The Characteristics on Water Surface Effects of Air Supported TP 620 Hydrofoil over Water (박용 TP 620익형의 공기 부양 특성)

  • 김시영
    • Journal of the Korean Society of Fisheries and Ocean Technology
    • /
    • v.22 no.2
    • /
    • pp.36-39
    • /
    • 1986
  • The steady potential flow about a TP 620 hydrofoil, flying in air above a dynamic water surface. is calculated by the one dimensional theory as the clearance-to-length ratio tends to very small. The characteristics on water surfare effects of air supported TP 620 hydrofoil over water are compared NACA 4412, NACA 66 and plate. respectively. It is found that using the TP 620 hydrofoil is superior lift coefficients. Moreover for trailing edge shape of the hydrofoil, high lift coefficients at 1 Fmn can be obtained.

  • PDF

Slotted flap을 부착한 WIG선에서의 수치해석 및 진동 저감을 위한 플랩 형상 최적설계

  • Baek, Seung-Chan;Yang, Ji-Hye
    • Proceeding of EDISON Challenge
    • /
    • 2016.03a
    • /
    • pp.541-547
    • /
    • 2016
  • 본 연구에서는 Slotted flap을 장착한 WIG선(Wing In Ground effect ship)에서 발생하는 진동을 최소화하기 위해 WIG선의 공력특성을 수치적으로 분석하고 그에 따라 플랩 형상에 대하여 최적화를 진행하였다. 주 익형에 대한 형상은 NACA 4412로 고정한 상태에서 플랩의 각도와 x, y좌표를 설계변수로 설정하였으며, 그에 따라 설정한 평균 $C_L$값을 유지하면서 진동의 진폭 크기가 작아지도록 제한 조건 및 목적 함수를 설정하였다. 최적화된 익형에서 플랩과 주 익형 사이에서 분출되는 유체는 코안다 효과의 영향을 받아 플랩 윗부분을 타고 흐른다. 이로 인해 진동에 결정적인 영향을 미치는 박리영역이 억제되었으며, 진동이 최소화 되었다. 결론적으로 플랩의 최적화를 통하여 기본 설계 익형에서 89%의 진동이 저감되는 것과 동시에 Lift/Drag 96.2로 기본 설계 익형에 비해 4.1배 향상되었다.

  • PDF

Effect of Airfoil Thickness on the Optimum Gurney Flap Height (최적 Gurney 플랩크기에 대한 익형두께의 영향)

  • Yoo, Neung-Soo;Lee, Jang-Ho
    • Proceedings of the KSME Conference
    • /
    • 2000.11b
    • /
    • pp.568-572
    • /
    • 2000
  • A numerical investigation was performed to determine the effect of airfoil thickness on the optimum Gurney flap height using NACA 00XX series airfoils. Seven airfoils which have 3% chord thickness difference were used. These were NACA 0006, 0009, 0012, 0015, 0018, 0021, and 0024. A Navier-Stokes code, FLUENT, was used to calculate the flow field about airfoil. The fully turbulent results were obtained using the standard $k-{\varepsilon}$ two-equation turbulence model. To provide a check case fur our computational method, numerical studies for NACA 4412 airfoil were made and compared with already existing experimental data for this airfoil by Wadcock. For every NACA 00XX airfoil, Gurney flap heights ranging from 0.5% to 2.0% chord were changed by 0.5% chord interval and their effects were studied. With the numerical solutions, the relationship between $(L/D)_{max}$ and airfoil thickness as a function of flap height and the relationship between $(L/D)_{max}$ and flap height as a function of airfoil thickness were investigated. The same relationship for $(C_l)_{max}$ also were shown. From these results, the optimum flap size for each airfoil thickness can be determined and vice versa.

  • PDF

A Fundamental Study on Wind Turbine Model of the Wind Power Generation (풍력발전용 모형터빈에 관한 기초적연구)

  • Kim, J.H.;Nam, C.D.;Kim, Y.H.;Lee, Y.H.
    • Proceedings of the KSME Conference
    • /
    • 2001.06d
    • /
    • pp.1014-1019
    • /
    • 2001
  • A numerical investigation was performed to determine the effect of airfoil on the optimum flap height using NACA 00XX and 44XX airfoils. The six flaps which have 0.5% chord height difference were selected. A Navier-Stokes code, FLUENT, was used to calculate the flow field of the airfoil. The code was first tested as a benchmark by modelling flow around a NACA 4412 airfoil. Predictions of local pressure coefficients are found to be in good agreement with the result of the experimental result. For every NACA 00XX and 44XX airfoil, flap heights ranging from 0.0% to 2.5% chord were changed by 0.5% chord interval and their effects were also studied. Representative results from each case are presented graphically and discussed. It is concluded that this initial approach gives an idea for the future development of the wind turbine optimum design.

  • PDF

A Basis Study on Optimum Design of Air Turbine for Wind Power Generation (풍력발전용 공기터빈의 최적설계에 관한 기초 연구)

  • 김정환;김범석;김윤해;남청도;이영호
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.25 no.5
    • /
    • pp.1091-1097
    • /
    • 2001
  • A numerical investigation was performed to determine the effect of airfoil on the optimum flap height using NACA 00XX and 44XX airfoils. The six flaps which have 0.5% chord height difference were selected . A Navier-Stokes code, FLUENT, was used to calculate the flow field of the airfoil. The code was first tested as a benchmark by modelling flow around a NACA 4412 airfoil. Predictions of local pressure coefficients are found to be in good agreement with the result of the experimental results. For every NACA 00XX and 44XX airfoil, flap heights ranging from 0.0% to 2.5% chord were changed by 0.5% chord interval and their effects were also studied. Representative results from each case are presented graphically and discussed. It is conclued that this initial approach gives an idea for the future development of the wind turbine optimum design.

  • PDF

A Basis Study on Optimum Design of Turbine for Wind Power Generation(II) (풍력발전용 터빈의 최적설계에 관한 기초 연구(II))

  • 김정환;김범석;김춘식;김진구;이영호
    • Proceedings of the Korean Society of Marine Engineers Conference
    • /
    • 2001.05a
    • /
    • pp.58-62
    • /
    • 2001
  • A numerical investigation was performed to determine the effect of airfoil on the optimum flap. height using NACA 0006, 0009, 0012, 0015, 0018, 0021 and 0024 airfoils. The six flaps which have 0.5% chord height difference were used. A Navier-Stokes code, FLUENT, was used to calculate the flow field of the airfoil. The code was first tested as a benchmark by modelling flow around a NACA 4412 airfoil. Predictions of local pressure coefficients are found to be in good agreement with the result of the experimental result. For every NACA 00XX airfoil, flap heights ranging from 0.0% to 2.5% chord were changed by 0.5% chord interval and their effects were also studied. Representative results from each case are presented graphically and discussed. It is concluded that this initial approach gives a promise for the future development of wind turbine optimum design.

  • PDF