• Title/Summary/Keyword: NA sensors

Search Result 221, Processing Time 0.026 seconds

Development of Humidity Sensor Based on Ceramic/Metal Halide Composite Films for Non-Contact Biological Signal Monitoring Applications (비접촉 생체신호 모니터링 응용을 위한 세라믹/메탈 할라이드 복합막 기반 습도센서 개발)

  • Park, Tae-Ung;Kim, Ik-Soo;Kim, Min-Ji;Park, Chulhwan;Seo, Eui-kyoung;Oh, Jong-Min
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.35 no.4
    • /
    • pp.412-417
    • /
    • 2022
  • Capacitive-type humidity sensors with a high sensitivity and fast response/recovery times have attracted a great attention in non-contact respiration biological signal monitoring applications. However, complicated fabrication processes involving high-temperature heat treatment for the hygroscopic film is essential in the conventional ceramic-based humidity sensors. In this study, a non-toxic ceramic/metal halide (BaTiO3(BT)/NaCl) humidity sensor was prepared at room temperature using a solvent-free aerosol deposition process (AD) without any additional process. Currently prepared BT/NaCl humidity sensor shows an excellent sensitivity (245 pF/RH%) and superior response/recovery times (3s/4s) due to the NaCl ionization effect resulting in an immense interfacial polarization. Furthermore, the non-contact respiration signal variation using the BT/NaCl sensor was determined to be over 700% by maintaining the distance of 20 cm between the individual and the sensor. Through the AD-fabricated sensor in this study, we expect to develop a non-contact biological signal monitoring system that can be applied to various fields such as respiratory disease detection and management, infant respiratory signal observation, and touchless skin moisture sensing button.

Fabrication and characteristic of thin-film NTC thermal sensors (박막형 NTC 열형 센서의 제작 및 특성 평가)

  • Yoo, Mi-Na;Lee, Moon-Ho;Yu, Jae-Yong
    • Journal of Sensor Science and Technology
    • /
    • v.15 no.1
    • /
    • pp.65-70
    • /
    • 2006
  • Characteristics of thin-film NTC thermal sensors fabricated by micromachining technology were studied as a function of the thickness of membrane. The overall-structure of thermal sensor has a form of Au/Ti/NTC/$SiO_{X}$/(100)Si. NTC film of $Mn_{1.5}CoNi_{0.5}O_{4}$ with 0.5 mm in thickness was deposited on $SiO_{X}$ layer (1.2 mm) by PLD (pulsed laser deposition) and annealed at 873-1073 K in air for 1 hour. Au(200 nm)/Ti(100 nm) electrode was coated on NTC film by dc sputtering. By the results of microstructure, X-ray and NTC analysis, post-annealed NTC films at 973 K for 1 hour showed the best characteristics as NTC thermal sensing film. In order to reduce the thermal mass and thermal time constant of sensor, the sensing element was built-up on a thin membrane with the thickness of 20-65 mm. Sensors with thin sensing membrane showed the good detecting characteristics.

A Study on the Smart Fire Detection System using the Wireless Communication (무선통신을 이용한 스마트 화재감지 시스템에 관한 연구)

  • Chung, Byoung-Chan;Na, Wonshik
    • Journal of Convergence Society for SMB
    • /
    • v.6 no.3
    • /
    • pp.37-41
    • /
    • 2016
  • In this paper, we propose a fire alarm system that utilizes Wi-Fi to alarm multiple people at once. This system, based on Arduino, uses smoke, flame and temperature sensor units to sense fire and send detection data to a server via wireless communication system. The server uses stored data to relay current fire situations gathered from nearby sensors to smartphones. It also automatically reports the fire using location data from sensors. Using this system, we were able to retrieve fire alarm from sensors via push notification of our smartphone. We also confirmed the establishment of linkage with sensors and automatic report of fire via SMS. From this result, the possibility of sending real-time notifications via the Internet toward nearby smartphones about disasters such as conflagration has been proven to be feasible.

SOx Sensor Using NASICON Solid Electrolyte (NASICON 고체 전해질을 사용한 SOx 가스 감지센서)

  • Choi, Soon-Don;Lee, Kwang-Beum
    • Journal of Sensor Science and Technology
    • /
    • v.5 no.4
    • /
    • pp.25-34
    • /
    • 1996
  • A SOx sensor using NASICON electrolyte was developed for monitoring of air pollution. The following galvanic cell with $Na_{2}SiO_{3}(Pt)$ reference electrode was assembled : Pt | $Na_{2}SiO_{3}$ | NASICON | $Na_{2}SO_{4}$ | Pt, $SO_{2}$, air $Na_{2}SO_{4}$ was used as an indicator electrode to protect NASICON electrolytes from chemical reaction with $SO_{2}$. The EMFs were measured after injecting $SO_{2}$ in the initial concentrations range of $5{\sim}95ppm$ at $400{\sim}550^{\circ}C$. The measured and calculated potentials were in good agreement above $500^{\circ}C$. However, the cells were unstable below $500^{\circ}C$, most likely due to incomplete attainment of chemical equilibrium. Response time was within 10 min. Based on the stability and response time of this cell, the NASICON solid electrolyte with $Na_{2}SiO_{3}(Pt)$ as the reference electrode and $Na_{2}SO_{4}$ (Pt)as the indicator electrode showed the possibility of a reliable, inexpensive commercial solid-state SOx sensor.

  • PDF

Reliability improvement of an ion-measuring system using FET sensor array (FET 센서 어레이를 이용한 이온 측정 시스템의 신뢰도 개선)

  • Choi, Jung-Tae;Lee, Seung-Hyup;Kim, Young-Jin;Lee, Young-Chul;Cho, Byung-Woog;Sohn, Byung-Ki
    • Journal of Sensor Science and Technology
    • /
    • v.8 no.4
    • /
    • pp.341-346
    • /
    • 1999
  • In general cases, compared with glass electrode, FET type electrolyte sensors have many advantages. But the drift, memory effect and the poor reproducibility of the FET type electrolyte sensor cause the decrease of the reliability in the measurement system. To improve the reliability, an ion-measuring system using FET type electrolyte sensor array with 8 sensors has been developed. Developed system employed the electronic switchs to connect a signal detecting circuit with 8 sensor array and the system can measure ion concentration of 4 different type electrolyte($H^+$, $Na^+$, $K^+$, $Ca^{2+}$). The signal processing algorithm with insertion sorting method was adopted to enhance the reliability. We measured 3 different ion($H^+$, $Na^+$, $K^+$) to evaluate the performance of developed system. The results show that the designed signal processing algorithm can reduce the error range in comparison with a simple arithmetic mean and the developed system has a good reliability over the previous single channel sensor system.

  • PDF

The Fabrication of FET-Type Reference Electrode Using Ion-Blocking Membrane of Polymer Double Layer (고분자 이중층의 이온 방해막을 이용한 FET형 기준전극 제작)

  • Lee, Young-Chul;Kim, Young-Jin;Jeong, Hun;Kwon, Dae-Hyuk;Sohn, Byung-Ki
    • Journal of Sensor Science and Technology
    • /
    • v.9 no.2
    • /
    • pp.106-112
    • /
    • 2000
  • A FET-type reference electrode(REFET) is an effective method to eliminate typical problems with ISFET(ion sensitive field-effect transistor) such as drift, temperature, light-dependence and miniaturization of reference electrode. However, it is difficult to make the highly reliable REFET with excellent long-term stability and reproducibility. In this paper, an ion-blocking membrane was applied to the REFET for the PET-type electrolyte sensors(pH, pNa-ISFET). The fabricated REFET indicated the stable sensitivity (55.4 mV/pH, 53.5 mV/decade) and good linearity in the pH and pNa measurement. In the measurement, ISFET/Pt/REFET configuration showed excellent stability and reproducibility.

  • PDF

Improvement of Control Performance of Array-Sensor System Using Soft Computing (Soft Computing을 이용한 배열 센서 시스템의 제어 성능 개선)

  • Na, Seung-You;Ahn, Myung-Kook
    • Journal of Sensor Science and Technology
    • /
    • v.12 no.2
    • /
    • pp.79-87
    • /
    • 2003
  • In this paper, we propose a method to obtain a linear characteristic using soft computing for systems which have array sensors of nonlinear characteristics. Also a procedure utilizing the pattern information of array sensors without additional sensors is proposed to reduce disturbance effects. For a typical example, even a single CdS cell for CdS array has nonlinear characteristics. Overall linear characteristic for CdS array is obtained using fuzzy logic for each cell and overlapped portion. In addition, further improvement for linearization is obtained applying genetic algorithms for the parameters of membership functions. Also the effect of disturbing external light changes to the CdS array can be reduced without using any additional sensors for calibration. The proposed method based on fuzzy logic shows improvements for position measurements and disturbance reduction to external light changes due to the fuzziness of the shadow boundary as well as the inherent nonlinearity of the CdS array. This improvement is shown by applying the proposed method to the ball position measurements of a magnetic levitation system.