• Title/Summary/Keyword: N3 dye

Search Result 248, Processing Time 0.027 seconds

Properties of PMMA Dyed with Reactive Azo Dye (반응성 아조염료로 착색한 PMMA의 성질)

  • Geum, Neri;Heo, Ji-Won
    • Applied Chemistry for Engineering
    • /
    • v.17 no.4
    • /
    • pp.426-431
    • /
    • 2006
  • Acryl and vinyl sulfone functionalized blue and orange azo dyes were prepared by the coupling reaction of 6-bromo-2-cyano-4-nitroaniline and 2,5-dimethoxy-4-(vinylsulfonyl)benzenamine with 3-acrylamido-(N,N-diethylamino)benzene and 3-methyl-(N,N-diethylamino)benzene, respectively, for the coloring of poly(methyl methacrylate) (PMMA). Allyl functionalized dye was also prepared by reacting vinyl sulfone-containing dye with allylamine. Three types of dyeing method were used: the copolymerization of reactive dye with methyl methacrylate (MMA) and dyeing by polymerization of MMA in the presence of polymeric dye and dye 2 without reactive function. The color fastness for the three PMMAs were evaluated by comparing the solubility of dye under various conditions.

High-Efficiency Dye-Sensitized Solar Cells by Extended Spectral Response Utilizing Dye Selective Positioning Method

  • Lee, Do-Gwon;Park, Se-Ung
    • Proceedings of the Materials Research Society of Korea Conference
    • /
    • 2010.05a
    • /
    • pp.12.1-12.1
    • /
    • 2010
  • We have developed a facile method to position different dyes (N719 and N749) sequentially in a mesoporous TiO2 layer through selective desorption and adsorption processes. Only upper part of the first adsorbed N719 dye was selectively removed by the desorption solution formulated with polypropylene glycol and tetrabutylammonium hydroxide without any damages of the dye. The desorption depth was controlled by the number of desorption process. Multi-dyed dye-sensitized solar cells (MDSSC) were fabricated by utilizing the method and their photovoltaic properties were investigated. From the incident photon-to-current conversion efficiency (IPCE) measurement, it was found that the MDSSC exhibited the extended spectral response for the solar spectrum while without decrease of maximum IPCE value compare to the DSSCs using one kind of dye (N719 or N749). The highest photocurrent density of 19.3 mA/cm2 was obtained from the MDSSC utilizing $15\;{\mu}m$ N719 / $14\;{\mu}m$ N749 bi-layered mesoporous TiO2 film. The photocurrent density was 25% and 8% higher than that of the DSSC using only N719 and N749 dye as a sensitizer, respectively. The power conversion efficiency of 9.8% was achieved from the MDSSC under the AM 1.5G one sun illumination.

  • PDF

Degradation and mineralization of violet-3B dye using C-N-codoped TiO2 photocatalyst

  • Putri, Reza Audina;Safni, Safni;Jamarun, Novesar;Septiani, Upita;Kim, Moon-Kyung;Zoh, Kyung-Duk
    • Environmental Engineering Research
    • /
    • v.25 no.4
    • /
    • pp.529-535
    • /
    • 2020
  • The present study investigated the photodegradation of synthetic organic dye; violet-3B, without and with the addition of C-N-codoped TiO2 catalyst using a visible halogen-lamp as a light source. The catalyst was synthesized by using a peroxo sol-gel method with free-organic solvent. The effects of initial dye concentration, catalyst dosage, and pH solution on the photodegradation of violet-3B were examined. The efficiency of the photodegradation process for violet-3B dye was higher at neutral to less acidic pH. The kinetics reaction rate of photodegradation of violet-3B dye with the addition of C-N-codoped TiO2 followed pseudo-first order kinetics represented by the Langmuir-Hinshelwood model, and increasing the initial concentration of dyes decreased rate constants of photodegradation. Photodegradation of 5 mg L-1 violet-3B dye achieved 96% color removal within 240 min of irradiation in the presence of C-N-codoped TiO2 catalyst, and approximately 44% TOC was removed as a result of the mineralization.

A study on the urinary metabolites of benzidine and benzidine based dye(Direct Black 38) (벤지딘 및 벤지딘계 염료(Direct Black 38)의 요중 대사물질에 관한 연구)

  • Roh, Jaehoon;Won, Jonguk;Kim, Chi Nyon;Kim, Hyeunsoo;Chun, Miryoung
    • Journal of Korean Society of Occupational and Environmental Hygiene
    • /
    • v.6 no.1
    • /
    • pp.156-164
    • /
    • 1996
  • Benzidine is recognized as a urinary bladder carcinogen in humans. The use of benzidine in industries was prohibited because of its carcinogenecity, but, production and usage of benzidine-based dye was still permitted in most countries. This study was performed to compare the excretory patterns of urinary metabolites between benzidine-based dye(Direct Black 38) and benzidine in rats Benzidine-based dye was administered orally at the doses of 0.3, 0.5, 0.7 mmol/kg and benzidine was administered orally at the doses of 0.2, 0.4, 0.6 mmol/kg into Sprague-Dawley rats. To analyze benzidine and its metabolites, the high performance liquid chromatography with an electric chemical and ultraviolet detector were used. N-acetylbenzidine, N,N'-diacetylbenzidine and 4-aminobiphenyl were identified in the urine of the rats receiving dye and benzidine. The excreted amount of the urinary benzidine from dye was almost 1/10 of that from benzidine. Excretion rates of metabolites were more prolonged in the dye receiving group than those of the benzidine group. Peak concentration time of urinary N,N'-diacetylbenzidine was more prolonged than other metabolites in both groups. The excreted amount of N-acetylbenzidine was more than the others in both group. These results suggested that N-acetylbenzidine may be an useful Biological exposure index for benzidine-based dye.

  • PDF

Rates and Mechanism of Fading Reaction of Magenta Azomethine Dye in Basic Solution (염기성 용액에서 마젠타 아조메틴 색소의 퇴색 반응속도와 메커니즘)

  • Lee Joong-Ho;Kim Jung-Sung;Kim Chang-Su
    • Journal of Environmental Science International
    • /
    • v.14 no.7
    • /
    • pp.711-717
    • /
    • 2005
  • A magenta azomethine dye(D) was synthesized from the reaction of 3-methyl-1-phenyl-2-pyrazoline-5-one with N,N-diethyl-1,4-phenylenediamine. The magenta azomethine dye was identified on the basis of elemental analysis, $^{13}C-NMR$, infrared, and GC/MS studies. The magenta azomethine dye was decomposed in a basic solution. Rate constants of the fading reaction of magenta azomethine dye in ethanol-water solvent were measured spectrophoto­metrically at 540 nm. Reaction rate was increased with the increase of $[OH\^{-}]\;and\;[H\_{2}O]$ in the region of $[H_{2}O]=11\~40\;M$. The reaction was governed by the following rate law. -d[D]/dt = $\{k_o\;+\;k_{OH}[OH^-][H_{2O}]\}[D]$ A possible mechanism consistent with the empirical rate law has been proposed.

Influence of Temperature and pH on Adsorption of Ru(II) Dye from Aqueous Solution onto $TiO_2$ Films ($TiO_2$ 전극과 Ru(II) 염료와의 흡착에 있어서 온도 및 pH의 영향)

  • Hwang, Kyungjun;Yoo, Seungjoon;Shim, Wanggeum;Lee, Jaewook
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2010.11a
    • /
    • pp.60.2-60.2
    • /
    • 2010
  • A $TiO_2$ films in dye-sensitized solar cells was fabricated using $TiO_2$ colloidal sol prepared from titanium iso-propoxide used as a starting material by applying the sol-gel method. It was characterized by particle size analyzer, XRD, FE-SEM, and BET analysis. The adsorption isotherms of dye molecule on $TiO_2$ films were obtained at three different temperatures (30, 45, $60^{\circ}C$) and at three different pH (3, 5, 7). The adsorption kinetics of dye molecule on $TiO_2$ films were obtained at three different temperatures (30, 45, $60^{\circ}C$. The adsorption experimental data were correlated with Langmuir isotherm model and pseudo-second-order model. Also the isosteric enthalpies of dye adsorption were calculated by the Clausius-Clapeyron equation. In addition, the adsorption energy distribution functions which describe heterogeneous characteristics of nanocrystalline $TiO_2$ film surface were calculated by using the generalized nonlinear regularization method. We found that efficient adsorption of N719 dye from aqueous solution onto $TiO_2$ films can be successfully achieved by dye adsorption conditions and morphology of $TiO_2$ films.

  • PDF

Interrelation on the Electronic Structure and Spectroscopic-Photoeletric Characteristics in the Cyanine and Merocyanine Dye(II) (Cyanine 및 Merocyanine색소의 분광특성 및 광전특성에 대한 전자구조의 상관관계(II))

  • 손세모
    • Journal of the Korean Graphic Arts Communication Society
    • /
    • v.13 no.2
    • /
    • pp.1-17
    • /
    • 1995
  • Organic thin film electroluminescene devices were fabricated using by molecularly doped method with N,N`-diphenyl-N,N`-bis(3-methylphenyl)-1,1`-biphenyl-4,4`-diamine(TPD) as a hole transport material, tris(8-quinolinolate) aluminium(III)(Alq3) as an emitting and electron transport agent, fluorescent squarylium(SQ) dye as a dopant, and poly(methylmethacrylate) as polymer materials. A cell structure of ITO/TPD-PMMA/Alq3-dopant/Mg was employed. The EL spectrum covers a wide range of the visible region and orange emission os observed. Two peaks at 520 and 660nm correspond to the emissions 620nm Alq3 and SQ dye, respectively.

  • PDF

The Luminance characteristics of Red OELD based on Znq$_2$ and dye (Znq2와 dye에 의한 적색 OELD의 발광특성)

  • 조민정;최완지;박철현;임기조;박수길;김현후
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2001.07a
    • /
    • pp.358-360
    • /
    • 2001
  • In this study, the bis(8-oxyquinolino)zinc II (Znq$_2$) were synthesized successfully from zinc chloride (ZnC1$_2$) as a initial material. Then, we fabricated red organic electroluminescent device with a dye (DCJTB)-doped and inserted Znq$_2$ between emission layer and cathode layer for increasing EL efficiency. The hole transfer layer is a N,N'-diphenyl-N,N'-bis-(3-methyl phenyl) -1,1'-diphenyl-4,4'- diamine(TPD), and the host material of emission layer is Znq$_2$. And we study the electrical and optical properties of devices. We found that the device using Znq$_2$ inserting layer result in the increased efficiency.

  • PDF

Synthesis of Metal-free Organic Dye for Dye-sensitized Solar Cell (염료감응 태양전지를 위한 무금속 유기염료의 합성)

  • Pattarith, K.;Pungwiwat, N.;Laosooksathit, S.
    • Journal of the Korean Chemical Society
    • /
    • v.55 no.2
    • /
    • pp.279-282
    • /
    • 2011
  • Dye-sensitized solar cell (DSSC); an alternate energy source harvester has gained some attractive features such as high-energy conversion efficiency low production cost. Dye-sensitizer is a basic component of DSSC, which affecting the performance of the energy conversion efficiency. Current research has been focusing on development of high efficiency, metal-free dye-sensitizers, which would be more environmental friendly. We had successfully explored synthetic route to 6,6'-(1,2,5-oxadiazole-3,4-diyl)dipyridine-2,4-dicarboxylic acid (3A) which has been used as organic sensitizer. Investigation of light conversion efficiency (${\eta}$) of the compound uses standard measurement condition (one sun simulated irradiation, AM 1.5, 100 mW/$cm^2$) showed that it could reach 1.00% ($J_{SC}=2.63\;mAcm^{-2}$, $V_{OC}$=0.64 V and FF=0.59). Under the same conditions, the ruthenium complex (N719) gave the conversion efficiency as high as 4.02%($J_{SC}=10.50\;mAcm^{-2}$, $V_{OC}$=0.67V and FF=0.57).

Luminance Characteristics of a Novel Red-Light-Emitting Device Based on Znq2 and Dye

  • Cho, min-Jeong;Park, Wan-Ji;Lee, Jeong-Gu;Lim, In-Su;Lim, Kee-Joe;Kim, Hyun-Hoo
    • Transactions on Electrical and Electronic Materials
    • /
    • v.3 no.2
    • /
    • pp.16-19
    • /
    • 2002
  • In this study, a novel red emitting organic electroluminescent (EL) device was fabricated with the bis(8-oxyquinolino)zinc II (Znq2) doped dye as an emitting layer. The Znq2 was synthesized successfully from zinc chloride (ZnC1$_2$) as an initial material. Then, we fabricated the red organic EL device with a dye (DCJTB) doped and inserted Znq2 between emission layer and cathode for increasing EL efficiency. The hole transporting layer is a N,N'-diphenyl-N,N'-bis-(3-methylphenyl)-1,1'-diphenyl-4,4-diamine (TPD), and the host material of emission layer is Znq2. And the electrical and luminance characteristics of the device were measured. We found that the EL device with Znq2 inserting layer results in the increasing luminance efficiency.