• Title/Summary/Keyword: N2a cells

Search Result 3,335, Processing Time 0.031 seconds

Propofol Post-conditioning Protects against COS-7 Cells in Hypoxia/reoxygenation Injury by Induction of Intracellular Autophagy

  • Kwak, Jin-Won;Kim, Eok-Nyun;Park, Bong-Soo;Kim, Yong-Ho;Kim, Yong-Deok;Yoon, Ji-Uk;Kim, Cheul-Hong;Yoon, Ji-Young
    • Journal of The Korean Dental Society of Anesthesiology
    • /
    • v.14 no.1
    • /
    • pp.49-56
    • /
    • 2014
  • Background: Propofol (2.6-diisopropylphenol) is a widely used intravenous anesthetic agent for the induction and maintenance of anesthesia during surgeries and sedation for ICU patients. Propofol has a structural similarity to the endogenous antioxidant vitamin E and exhibits antioxidant activities.13) However, the mechanism of propofol on hypoxia/reoxygenation (H/R) injury has yet to be fully elucidated. We investigated how P-PostC influences the autophagy and cell death, a cellular damage occurring during the H/R injury. Methods: The groups were randomly divided into the following groups: Control: cells were incubated in normoxia (5% CO2, 21% O2, and 74% N2) without propofol treatment. H/R: cells were exposed to 24 h of hypoxia (5% CO2, 1% O2, and 94% N2) followed by 12 h of reoxygenation (5% CO2, 21% O2, and 74% N2). H/R + P-PostC: cells post-treated with propofol were exposed to 24 h of hypoxia followed by 12 h of reoxygenation. 3-MA + P-PostC: cells pretreated with 3-MA and post-treated propofol were exposed to 24 h of hypoxia followed by 12 h of reoxygenation Results: The results of our present study provides a new direction of research on mechanisms of propofol-mediated cytoprotection. There are three principal findings of these studies. First, the application of P-PostC at the onset of reoxygenation after hypoxia significantly increased COS-7 cell viability. Second, the cellular protective effect of P-PostC in H/R induced COS-7 cells was probably related to activation of intra-cellular autophagy. And third, the autophagy pathway inhibitor 3-MA blocked the protective effect of P-PostC on cell viability, suggesting a key role of autophagy in cellular protective effect of P-PostC. Conclusions: These data provided evidence that P-PostC reduced cell death in H/R model of COS-7 cells, which was in agreement with the protection by P-PostC demonstrated in isolated COS-7 cells exposed to H/R injury. Although the this study could not represent the protection by P-PostC in vivo, the data demonstrate another model in which endogenous mechanisms evoked by P-PostC protected the COS-7 cells exposed to H/R injury from cell death.

Neural Antigen Expressions in Cultured Human Umbilical Cord Blood Stem Cells in vitro (시험관내 배양된 제대혈 모세포에서의 신경항원 발현)

  • Ha, Yoon;Yoon, Do Heum;Yeon, Dong Su;Kim, Hyun Ok;Lee, Jin Ju;Cho, Yong Eun;Choi, Joong Uhn
    • Journal of Korean Neurosurgical Society
    • /
    • v.30 no.8
    • /
    • pp.963-969
    • /
    • 2001
  • Objectives : Cord blood stem cells have been widely used as donor cells for bone marrow transplantation recently. These cells can give rise to a variety of hematopoietic lineages to repopulate the blood. Recent observations reveal that some bone marrow cells and bone marrow stromal cells(MSCs) can grow to become either neurons or glial cells. It is, however, unclear whether or not there exists stems cells which can differentiate into neurons in the blood during the early stages of postnatal life. Methods : Human cord blood stem cells were prepared from human placenta after full term delivery. To induce neuronal differentiation of stem cells, ${\beta}$-mercaptoethanol was treated. To confirm the neuro-glial characteristics of differentiated stem cells, immunocytochemical stain for NeuN, neurofilament, glial fibrillary acidic protein(GFAP), microtubule associated protein2(MAP2) was performed. RT-PCR was performed for detecting nestin mRNA and MAP2 mRNA. Results : We showed in this experiment that neuro-glial markers(NeuN, neurofilament, MAP2, GFAP) were expressed and axon-like cytoplasmic processes are elaborated in the cultured human cord blood stem cells prepared from new born placenta after full term delivery. Nestin mRNA was also detected in fresh cord blood monocytes. Conclusions : These results suggest that human cord blood derived stem cells may be potential sources of neurons in early postnatal life.

  • PDF

Reconfiguration method for array structures using spare element lines (여분소자 라인을 이용한 배열구조의 재구성 방법)

  • 김형석;최상방
    • Journal of the Korean Institute of Telematics and Electronics C
    • /
    • v.34C no.2
    • /
    • pp.50-60
    • /
    • 1997
  • Reconfiguration of a memory array using spare rows and columns has been known to be a useful technique to improve the yield. When the numbers of spare rows and scolumns are limited, respectively, the repair problem is known to be NP-complete. In this paper, we propose the reconfiguration algorithm for an array of memory cells using faulty cel clustering, which removes rows and columns algrithm is the simplest reconfiguration method with the time complexity of $O(n^2)$, where n is the number of faulty cells, however the repair rate is very low. Whereas the exhaustive search algorithm has a high repair rate, but the time complexity is $O(2^n)$. The proposed algorithm provides the same repair rate as the exhaustive search algorithm for almost all cases and runs as fast as the greedy method. It has the time complexity of $O(n^3)$ in the worst case. We show that the propsed algorithm provides more efficient solutions than other algorithms using simulations.

  • PDF

m2 Muscarinic Receptors Stimulate Neuronal Nitric Oxide Synthase

  • Lee, Seok-Yong;Park, Sun-Hye;Cho, Tai-Soon
    • Proceedings of the Korean Society of Applied Pharmacology
    • /
    • 1996.04a
    • /
    • pp.208-208
    • /
    • 1996
  • In this work we investigated coupling of the m2 and m4 subtypes of muscarinic acetylcholine receptors expressed in chinese hamster ovary (CHO) cells to activation of neuronal nitric oxide synthase (nNOS). Stimulation of guanylate cyclase activity in detector neuroblastoma cells was used as an index of generation of nitric oxide (NO) in CHO cells. The agonist carbachol induced marked time and concentration-dependent enhancement of the activity of nNOS at m2 receptors. In sharp contrast, the response in CHO cells transfected with the m4 receptor gene was similar in magnitude to that observed in non-transfected cells, suggesting lack of significant coupling of m4 muscarinic receptors to NO signaling. This novel observation of functional divergence of the two muscarinic receptor subtypes at the level of activation of nNOS is quite intriguing, in light of the currently accepted dogma that they belong to the same functional class. This functional selectivity was not due to differential effects on intracellular Ca$\^$2+/ concentration, since activation of both subtypes of muscarinic receptors produced a comparable, albeit quite small, Ca$\^$2+/ signal. Taken together, our present data strongly suggest that the generally assumed functional equivalence of m2 and m4 muscarinic receptors should be carefully reexamined. These data also suggest the presence of alternate mechanisms of activation of nNOS, which might be operative in the absence of large changes in the concentration of cellular Ca$\^$2+/. The latter mechanisms are expected to be activated by m2, but not m4 muscarinic receptors. Both sets of findings are quits important in regards to refining the functional classification of muscarinic receptor subtypes and the cellular mechanisms of activation of NOS.

  • PDF

Histone Deacetylase Inhibitors Induce the Differentiation of Eosinophilic Leukemia EoL-1 Cells into Eosinophils

  • Ishihara Kenji;Hong Jang-Ja;Kaneko Motoko;Takahashi Aki;Sugeno Hiroki;Kang Young-Sook;Ohuchi Kazuo
    • Biomolecules & Therapeutics
    • /
    • v.14 no.2
    • /
    • pp.67-74
    • /
    • 2006
  • EoL-1 cells differentiate into eosinophils in the presence of n-butyrate, but the mechanism has remained to be elucidated. Because n-butyrate can inhibit histone deacetylases, we hypothesized that the inhibition of histone deacetylases induces the differentiation of EoL-1 cells into eosinophils. In this study, using n-butyrate and two other histone deacetylase inhibitors, apicidin and trichostatin A, we have analyzed the relationship between the inhibition of histone deacetylases and the differentiation into eosinophils in EoL-1 cells. It was demonstrated that apicidin and n-butyrate induced a continuous acetylation of histones H4 and H3, inhibited the proliferation of EoL-1 cells, and induced the expression of markers for mature eosinophils such as integrin ${\beta}7$, CCR1, and CCR3 on EoL-1 cells, while trichostatin A evoked a transient acetylation of his tones and induced no differentiation into eosinophils. These findings suggest that the continuous inhibition of histone deacetylases in EoL-1 cells induces the differentiation into mature eosinophils.

Effects of dihydrocubebin, a lignan isolated from Indonesian plant Piper cubeba, on the histamine release from rat mast cells

  • Nugroho, Agung Endro;Wahyono, Wahyono;Wahyuono, Subagus;Maeyama, Kazutaka
    • Advances in Traditional Medicine
    • /
    • v.10 no.3
    • /
    • pp.200-207
    • /
    • 2010
  • The fruits of Piper cubeba L. are used traditionally to treat respiratory disorders in Indonesia. In order to determine the compounds responsible for this activity, the fruits were extracted with nhexane followed by ethanol to give n-hexane and ethanol extracts. Based on tracheospasmolytic assay on these two extracts, the n-hexane extract was more active to inhibit trachea contraction than that of ethanol extract. Upon bioassay guided isolation of the n-hexane extract, a tracheospasmolytic active compound was isolated and identified as dihydrocubebin [(3,4),(3',4')-bis-methylenedioxy-9,9'dihydroxylignan] $(\underline{1})$. Compound $\underline{1}$ was tested further for its ability to inhibit histamine released from mast cells, using rat basophilic leukemia (RBL-2H3) cell line and rat peritoneal mast cells RPMCs) as models; and $DNP_{24}$-BSA, thapsigargin, ionomycin, compound 48/80 and PMA were used as inducers for histamine released from mast cell. The test result showed that $\underline{1}$ inhibited histamine release from RBL-2H3 cells induced by $DNP_{24}$-BSA, thapsigargin and ionomycin. In addition, $\underline{1}$ suppressed histamine release from RPMC induced by either thapsigargin or ionomycin. However, $\underline{1}$ did not inhibit histamine release from RPMC induced by either compound 48/80 or combination PMA-sub optimum dose of ionomycin. Therefore, it was concluded that the inhibitory effects of $\underline{1}$ on the histamine released from mast cells may involve mechanisms related to intracellular $Ca^{2+}$ signaling events or downstream processes of intracellular $Ca^{2+}$ signaling in mast cells.

Carbon nanotube/silicon hybrid heterojunctions for photovoltaic devices

  • Castrucci, Paola
    • Advances in nano research
    • /
    • v.2 no.1
    • /
    • pp.23-56
    • /
    • 2014
  • The significant growth of the Si photovoltaic industry has been so far limited due to the high cost of the Si photovoltaic system. In this regard, the most expensive factors are the intrinsic cost of silicon material and the Si solar cell fabrication processes. Conventional Si solar cells have p-n junctions inside for an efficient extraction of light-generated charge carriers. However, the p-n junction is normally formed through very expensive processes requiring very high temperature (${\sim}1000^{\circ}C$). Therefore, several systems are currently under study to form heterojunctions at low temperatures. Among them, carbon nanotube (CNT)/Si hybrid solar cells are very promising, with power conversion efficiency up to 15%. In these cells, the p-type Si layer is replaced by a semitransparent CNT film deposited at room temperature on the n-doped Si wafer, thus giving rise to an overall reduction of the total Si thickness and to the fabrication of a device with cheaper methods at low temperatures. In particular, the CNT film coating the Si wafer acts as a conductive electrode for charge carrier collection and establishes a built-in voltage for separating photocarriers. Moreover, due to the CNT film optical semitransparency, most of the incoming light is absorbed in Si; thus the efficiency of the CNT/Si device is in principle comparable to that of a conventional Si one. In this paper an overview of several factors at the basis of this device operation and of the suggested improvements to its architecture is given. In addition, still open physical/technological issues are also addressed.

Quercetin Prevents Hydrogen Peroxide-induced Necrotic and Apoptotic Cell Death in Human Colonic Epithelial Cells

  • Jung, Soon-Hee
    • Korean Journal of Clinical Laboratory Science
    • /
    • v.43 no.4
    • /
    • pp.161-170
    • /
    • 2011
  • Quercetin is one of the most distributed flavonoids in the plant kingdom and occurs naturally in a wide range of fruits and vegetables. This study was undertaken to determine whether quercetin exerts beneficial effect against necrotic and apoptotic cell death induced by hydrogen peroxide ($H_2O2$) in intestinal cells using the human-derived cultured T84 colonic epithelial cell line. Necrotic cell death was induced by exposing cells to 0.5 mM $H_2O_2$ for 2 h and apoptosis was induced by incubating cells in normal culture medium for 18 h following exposure of cells to 0.5 mM $H_2O2$ for 2 h. Cell viability was evaluated by the trypan blue exclusion assay and apoptosis was assessed by Hoechst 33258 staining and flow cytometry. $H_2O_2$ induced necrotic cell death in a time and dose-dependent fashion. Both necrotic and apoptotic cell deaths were not prevented by the antioxidants N,N'-diphenyl-p-phenylenediamine(DPPD) and Trolox, whereas both cell deaths induced by the organic hydroperoxide t-butylhydroperoxide (tBHP) were prevented by DPPD, suggesting that $H_2O_2$ induces cell death through a lipid peroxidation-independent mechanism. $H_2O2$-induced necrotic death was prevented by deferoxamine and 3-aminobenzamide, while the apoptotic cell death was not affected by these agents. Quercetin prevented both necrotic and apoptotic cell deaths induced by $H_2O_2$ in a dose-dependent manner. $H_2O_2$ caused activation of poly (ADP-ribose) polmerase (PARP), which was inhibited by deferoxamine, 3-aminobenzamide, and quercetin, but not DPPD. These results indicate that quercetin inhibits both necroticand apoptotic deaths of T84 cells. The anti-necrotic effect of quercetin may be attributed to its iron chelator activity rather than a direct $H_2O_2$ scavenging capacity and antioxidant. The present study suggests that quercetin may play a therapeutic role in the treatment of human gastrointestinal diseases mediated by oxidants.

  • PDF

DNA Transfection in SK-N-BE(2)C Human Neuroblastoma Cells

  • Lee, Myung-Koo
    • Archives of Pharmacal Research
    • /
    • v.16 no.2
    • /
    • pp.155-157
    • /
    • 1993
  • DNA transfection conditions were investigated by calcium phosphate-DNA co-precipitation in SK-N-BE(2)C human neuroblastoma cells. The DNA plasmid of TH2400CAT was used in which rat tyrosine hydroxylase gene was inserted into chloramphenicol acetyltransferase reporter gent. The transfection efficiency was 25-30% and the method was simple and reproducible. So, the method will be a good tool for transient transfection analysis.

  • PDF

Arachidonic Acid Activates $K^+$-$Cl^-$-cotransport in HepG2 Human Hepatoblastoma Cells

  • Lee, Yong-Soo
    • The Korean Journal of Physiology and Pharmacology
    • /
    • v.13 no.5
    • /
    • pp.401-408
    • /
    • 2009
  • $K^+$-$Cl^-$-cotransport (KCC) has been reported to have various cellular functions, including proliferation and apoptosis of human cancer cells. However, the signal transduction pathways that control the activity of KCC are currently not well understood. In this study we investigated the possible role of phospholipase $A_2$ ($PLA_2$)-arachidonic acid (AA) signal in the regulatory mechanism of KCC activity. Exogenous application of AA significantly induced $K^+$ efflux in a dose-dependent manner, which was completely blocked by R-(+)-[2-n-butyl-6,7 -dichloro-2-cyclopentyl-2,3-dihydro-1-oxo-1Hinden-5-yl]oxy]acetic acid (DIOA), a specific KCC inhibitor. N-Ethylmaleimide (NEM), a KCC activatorinduced $K^+$ efflux was significantly suppressed by bromoenol lactone (BEL), an inhibitor of the calciumindependent $PLA_2$ ($iPLA_2$), whereas it was not significantly altered by arachidonyl trifluoromethylketone ($AACOCF_3$) and p-bromophenacyl bromide (BPB), inhibitors of the calcium-dependent cytosolic $PLA_2$ ($cPLA_2$) and the secretory $PLA_2$ ($sPLA_2$), respectively. NEM increased AA liberation in a doseand time-dependent manner, which was markedly prevented only by BEL. In addition, the NEM-induced ROS generation was significantly reduced by DPI and BEL, whereas $AACOCF_3$ and BPB did not have an influence. The NEM-induced KCC activation and ROS production was not significantly affected by treatment with indomethacin (Indo) and nordihydroguaiaretic acid (NDGA), selective inhibitors of cyclooxygenase (COX) and lipoxygenase (LOX), respectively. Treatment with 5,8,11,14-eicosatetraynoic acid (ETYA), a non-metabolizable analogue of AA, markedly produced ROS and activated the KCC. Collectively, these results suggest that $iPLA_2$-AA signal may be essentially involved in the mechanism of ROS-mediated KCC activation in HepG2 cells.