• Title/Summary/Keyword: N-nitroso-N-methylurethane(NNNMU)

Search Result 3, Processing Time 0.021 seconds

Neutrophilic Respiratory Burst Contributes to Acute Lung Leak in Rats Given N-nitroso-N-methylurethane (N-nitroso-N-methylurethane으로 유도된 급성 폐손상에서 호중구에 의한 산화성 스트레스의 역할)

  • Kim, Seong-Eun;Kim, Dug-Young;Na, Bo-Kyung;Lee, Young-Man
    • Applied Microscopy
    • /
    • v.33 no.1
    • /
    • pp.1-16
    • /
    • 2003
  • As is well known that N-nitroso-N-methylurethane (NNNMU) causes acute lung injury (ALI) in experimental animals. And ALI caused by NNNMU is very similar to ARDS in human being in its pathology and progress. In its context, we investigated the pathogenetic mechanism of ARDS associated with oxidative stress by neutrophils in Sprague-Dawley rat model of NNNMU-induced ALI. NNNMU had increased lung weight/body weight ratio (L/B ratio), lung myeloperoxidase (MPO) activity, protein content and number of neutrophils in bronchoalveolar fluid (BALF) compared with those of control rat (p<0.001, respectively). In contrast, the amount of pulmonary surfactant in BALF was decreased by NNNMU (p<0.001). Morphologically, light microscopic examination denoted pathological findings such as formation of hyaline membrane, infiltration of neutrophils and perivascular cuffing in the lungs of NNNMU-treated rats. In addition, ultrastructural changes such as the necrosis of endothelial cells, swelling and vacuolization of lamellar bodies of alveolar type II cells, and the degeneration of pulmonary surfactant were identified after treatment of NNNMU. Very interestingly, cerium chloride electron microscopic cytochemistry showed that NNNMU had increased the production of cerrous-peroxide granules in the lung, which signified the increased production of hydrogen peroxide in the lung. Collectively, we conclude that NNNMU causes acute lung leak by the mechanism of neutrophilic oxidative stress of the lung.

The Change of Secretory Activity of the Alveolar Type ll Cell During Acute Alveolar Injury Induced by N-Nitroso-N-Methylurethane

  • Lee, Young-Man;Bang, In-Sook;Lee, Suck-Kang
    • The Korean Journal of Physiology
    • /
    • v.28 no.1
    • /
    • pp.71-77
    • /
    • 1994
  • In the animal model of acute respiratory distress syndrome (ARDS) induced by N-nitroso-N-methylurethane (NNNMU) the secretory activity of alveolar type H cells during acute alveolar injury was investigated by determining phospholipid and pulmonary surfactant associated proteins in crude surfactant. The mechanism of the secretory change was studied by determination of DNA and RNA levels in the lung tissue. After induction of acute alveolar injury with NNNMU, pulmonary hemorrhage, atelectasis and gross hypertrophy were observed. Seven days after NNNMU treatment the level of total DNA in lung homogenate was increased markedly indicating that a hypertrophy was induced by cellular proliferation. Although the total DNA level increased, the RNA/DNA ratio was gradually decreased after NNNMU treatment. Seven days after NNNMU treatment the RNA/DNA ratio returned to the normal control level. During the acute alveolar injury, phospholipid and surfactant associated proteins were reduced significantly as compared with the control, implying that the secretory activity of alveolar type II cells was altered during acute alveolar injury induced by NNNMU. The protein content in crude surfactant during peak injury(7 days after NNNMU) was decreased significantly but phospholipid/protein ratios were identical in both control and NNNMU treatment groups. SDS-PAGE of proteins in crude pulmonary surfactant showed a decrease in major surfactant associated protein(M.W. 38,000) during acute alveolar injury. The present study may suggest that while alveolar type H cells proliferate markedly, transcription of alveolar type ll cell gene was inhibited by an unknown mechanism such as DNA methylation induced by NNNMU. Such an inhibition of transcriptional activity is thought to be associated with the decreased secretory activity of alveolar type ll cells, which may lead to pulmonary atelectasis and edema during the acute alveolar injury.

  • PDF

Effects of high dose of dexamethasone on $PLA_2$, GGT activity and lung morphology in NNNMU-induced ARDS rats (NNNMU로 유도된 급성호흡곤란증후군 흰쥐 폐장에서의 dexamethasone에 의한 $PLA_2$, GGT의 활성도 및 형태학적인 변화)

  • Lee, Young Man;Park, Yoon Yub;Koh, Younsuck
    • Tuberculosis and Respiratory Diseases
    • /
    • v.43 no.6
    • /
    • pp.925-935
    • /
    • 1996
  • Background : In order to elucidate one of the pathogenic mechanisms of ARDS associated with pulmonary surfactant and oxidant injury, acute lung injury was induced by N-nitroso N-methylurethane (NNNMU). In this model, the role of phospholipase $A_2$ ($PLA_2$), surfactant, gamma glutamyl transferase (GGT) and morphology were investigated to delineate one of the pathogenic mechanisms of ARDS by inhibition of $PLA_2$ with high dose of dexamethasone. Method: Acute lung injury was induced in Sprague-Dawley rats by NNNMU which is known to induce acute lung injury in experimental animals. To know the function of the alveolar type II cells, GGT activity in the lung and bronchoalveolar lavage was measured. Surfactant phospholipid was measured also. $PLA_2$ activity was measured to know the role of $PLA_2$ in ARDS. Morphological study was performed to know the effect of $PLA_2$ inhibition on the ultrastructure of the lung by high dose of dexamethasone. Results : Six days after NNNMU treatment (4 mg/kg), conspicuous pulmonary edema was induced and the secretion of pulmonary surfactant was decreased significantly. In the acutely injured rats' lung massive infiltration of leukocytes was observed. At the same time rats given NNNMU had increased $PLA_2$ and GGT activity tremendously. Morphological study revealed bizarre shaped alveolar type II cells and hypertrophied lamellar bodies in the cytoplasm of the alveolar type II cells. But after dexamethasone treatment (20 mg/kg, for six days) in NNNMU-treated rats, these changes were diminished i.e. there were decrease of pulmonary edema and increase of surfactant secretion from alveolar type D cells. Rats given dexamethasone and NNNMU had decreased $PLA_2$ and GGT activity in comparison to NNNMU induced ARDS rats. Conclusion : Inhibition of $PLA_2$ by high dose of dexamethasone decreased pathological findings caused by infiltration of leukocytes and respiratory burst. Based on these experimental results, it is suggested that an activation of $PLA_2$ is the one of the major factors to evoke the acute lung injury in NNNMU-induced ARDS rats.

  • PDF