• 제목/요약/키워드: N-nitro-L-arginine methyl ester

검색결과 95건 처리시간 0.033초

흰쥐 대동맥에서 fluoxetine의 혈관 이완 효과 (Vasorelaxant effect of fluoxetine in isolated rat aorta)

  • 김상진;강형섭;김진상
    • 대한수의학회지
    • /
    • 제44권4호
    • /
    • pp.515-522
    • /
    • 2004
  • The vasorelaxant effect of serotonin reuptake inhibitor fluoxetine was investigated in rat isolated thoracic aorta. Fluoxetine induced a concentration-dependent relaxation in aorta precontracted with phenylephrine (PE) and KCl. These relaxations were suppressed by removal of the endothelium (-E) or pretreatment of nitric oxide synthase inhibitors, N(G)-nitro-L-arginine (L-NNA) and N(omega)-nitro-Larginine methyl ester (L-NAME), guanylate cyclase inhibitors, methylene blue (MB) and 1H-[1,2,4]oxadiazolo [4,3-a]quinoxalin-1-one (ODQ), and $Ca^{2+}$ channel blockers, nifedipine and verapamil, in PE-precontracted +E rings. However, fluoxetine-induced relaxations were not suppressed by pretreatment of $K^{+}$ channel blockers, tetrabutylammonium and glibenclamide, in PE-precontracted endothelium intact (+E) rings. The fluoxetine-induced relaxations were not suppressed by removal of the endothelium or pretreatment of LNNA and MB in KCl-precontracted +E rings. Also, fluoxetine inhibited PE-induced sustained contraction in +E rings. These inhibitory effects of fluoxetine on contractions could be reversed by removal of the endothelium or pretreatment of L-NNA, L-NAME, MB, ODQ, nifedipine and verapamil, but not by pretreatment of etrabutylammonium and glibenclamide. These findings suggest that the vasorelaxant effect of fluoxetine is modulated by intracellular $Ca^{2+}$ with an involvement of endothelial NO-cGMP pathway and also may be related to the inhibition of $Ca^{2+}$ entry through voltage-gated channel.

Regulatory Role of Nitric Oxide on Atrial Natriuretic Peptide System in Normotensive and Hypertensive Rats

  • Choi, Eun-Hah;Kim, Mi-Won;Lee, Jong-Un
    • The Korean Journal of Physiology and Pharmacology
    • /
    • 제1권1호
    • /
    • pp.79-82
    • /
    • 1997
  • The present study was aimed to explore an interaction between endothelium-derived nitric oxide (NO) and atrial natriuretic peptide (ANP) systems in normotensive and hypertensive states. Rats were made two-kidney, one clip (2K1C) hypertensive and supplemented with either $N^G-nitro-L-arginine$ methyl ester (L-NAME, 5 mg/100 ml drinking water) or L-arginine hydrochloride (400 mg/100 ml drinking water). One group supplied with normal tap water served as control. Sham-clipped rats were also divided into the L-NAME, L-arginine, and control groups. The plasma levels and atrial contents of ANP were determined at day 28 following clipping the renal artery. In 2K1C rats, the plasma level of ANP was higher and the atrial content was lower than in the sham-clipped control. L-Arginine increased the atrial content of ANP in association with a decreased plasma ANP, whereas L-NAME significantly affected neither parameter. The increase of blood pressure in 2K1C rats was not affected by L-arginine or L-NAME. In sham-clipped rats, the plasma level of ANP was significantly increased by L-NAME along with an increase in blood pressure. On the contrary, L-arginine did not affect the blood pressure or plasma ANP. The atrial content of ANP was significantly altered neither by L-arginine nor by L-NAME. These results suggest that NO plays a tonic inhibitory role on the ANP release with concomitant increases of the atrial tissue content. In addition, hypertension is suggested to modify the release and tissue storage of ANP.

  • PDF

Effect of Chronic Inhibition of Nitric Oxide on Blood Pressure and Apoptosis in the Blood Pressure-Associated with Organs

  • 배형준
    • 대한의생명과학회지
    • /
    • 제16권1호
    • /
    • pp.25-32
    • /
    • 2010
  • Sprague-Dawley(SD) rats were orally administered with $N^G$-nitro-L-arginine methyl ester(L-NAME) which inhibits or blocks the production of nitric oxide from L-arginine in vascular endothelial cells and vessel tissue to statistically examine the effects of nitric oxide on some physiological changes such as blood pressure and heart rate, and to confirm the apoptosis induced by the suppressed nitric oxide activity in some related organs under light microscope. Systolic blood pressure significantly increased 28.5% by the chronic treatment of L-NAME for 8 weeks (P<0.001), no significant difference, however, was observed in heart rate between the control group and the L-NAME-treated group regardless of their age. Hematoxylin-eosin staining showed some histological alterations only in kidney among the examined organs; heart, liver, pancreas, and adrenal gland from the L-NAME-treated group. TUNEL (terminal deoxynucleotidyl transferase-mediated dUTP nick end labeling) test showed a strong positive reaction, representing that the chronic treatment of L-NAME facilitates apoptosis, in the cortex and medulla of kidney, but not any significance detectable in the other organs. These results conclude that chronic treatment of L-NAME significantly increases blood pressure, and that the followed inhibition of nitric oxide synthesis occurs a typical inducement of apoptosis in kidney.

Octapeptide (Alanine Angiotensin) 의 合成 (Synthesis of an Octapeptide (Alanine Angiotensin))

  • 박원길
    • 대한화학회지
    • /
    • 제5권1호
    • /
    • pp.33-37
    • /
    • 1961
  • We have shown that carboxy-peptidase destroys the biological activity of angiotensin octa-and deca-peptides. Since Proline occurs as the seventh amino acid from the amino end of the chain and since carboxypeptidase does not cleave proline from a peptid chain, it is evident that the heptapeptid H.asp-arg-val-tyr-ileu-his-pro.OH is formed by this hydrolysis. This peptide must then be biologically inactive. In order to determine whether the phenyl group of the C-terminal amino acid was the necessary requirement for biological activity of the octapeptide, $ala^8$ angiotensin octapeptide(amino acids of peptides numbered from amino end) was synthesized. For this synthesis the four dipeptides were prepared: carbobenzoxy-L-prolyl-L-alanine-P-nitrobenzyl-ester, m.p. $134-135^{\circ}C,$ carbobenzoxy-L-isoleucyl-imidazole benzyl-L-histidine methyl ester, m.p. $114-116^{\circ}C,$ carbobenzoxy-L-valyl-L-tyrosine hydrazide and carbobenzoxy B-benzyl-L-aspartyl-nitro-L-arginine. The first three dipeptides were obtained as crystalline compounds. Imidazole-benzyl-L-histidine was used in the hope that it would block the histidine imidazole against side reactions in steps subsequent to the formation of the C-terminal tetrapeptide. Also, it was through that the imidazole benzylated peptides would be easier to crystallize. This, however, was not the case. The tetrapeptide, carbobenzoxy-L-isoleucyl-L-im, benzyl-histidyl, L-prolyl-L-alanine-nitrobenzyl ester was not obtained in a crystalline form. Neither could the mono-or dihydrobromide of the tetrapeptide free base be induced to crystallize. Carbobenzoxy-L-valyl-L-tyrosine azide was condensed with the tetrapeptide free base to yield the protected hexapeptide; carbobenzoxy-L-valyl-L-tyrosyl-L-isoleucyl-L-im, benzyl, histidyl-L-Prolyl-L-alanine-nitrobenzyl ester. Upon removal of the carbobenzoxy group with hydrogen bromide in acetic acid an amorphous free base hexapeptide ester was obtained. This compound gave the correct C, H, N analysis and contained the six amino acids in the correct ratio. The octapeptide was obtained by condensing this hexapeptide with carbobenzoxy-B-benzyl-L-aspartyl-nitro, L-arginine using the mixed anhydride method of condensation. This amorphous product was proven to be homogenous by chromatography in two solvent systems and upon hydrolysis yielded the eight amino acids in correct ratio. The five protecting groups were removed from the octapeptide by hydrogenolysis over palladium black catalyst. Biological assay of the free peptide indicated that it possessed less than 0.1 per cent of both pressor and oxytocic activity of the phenylalanine8 angiotensin. This suggests that the phenyl group is a point of attachment between angiotensin and its biological receptor site.

  • PDF

A Central Pressor Response to Endogenous Nitric Oxide Synthesis Inhibition in Anesthetized Rats

  • Moon, Sung-Ho;Yang, Min-Joon;Oh, Seung-Ho;Kim, Mi-Won;Yoo, Kwang-Jay;Lee, Jong-Eun;Jun, Jae-Yeoul;Yeum, Cheol-Ho;Yoon, Pyung-Jin
    • The Korean Journal of Physiology
    • /
    • 제28권2호
    • /
    • pp.197-202
    • /
    • 1994
  • The present study was aimed to determine if endogenous L-arginine-nitric oxide (NO) pathway has central, rather than peripheral, mechanisms in blood pressure regulation. Arterial blood pressure and heart rate responses to acute inhibition of the t-arginine-NO pathway were examined in rats anesthetized with thiopental (50 mg/kg, IP). An intracerebroventricular (ICV) cannula was placed in the left lateral ventricle. The right femoral artery was cannulated to measure arterial blood pressure and the vein to serve as an infusion route. $N^G-nitro-L-arginine$ methyl ester (L-NAME) was infused either intracerebroventricularly or intravenously. ICV infusion $(1.25\;{\mu}L/min)$ of L-NAME $(20\;or\;100\;{\mu}g/kg)$ per minute for 60 min) increased the mean arterial pressure and heart rate. Plasma renin concentrations(PRC) were significantly lower in L-NAME-infused group than in the control. L-Arginine $(60\;{\mu}g/min,\;ICV)$ prevented the pressor response to ICV L-NAME. The pressor response was not affected by simultaneous intravenous infusion of saralasin, but was abolished by hexamethonium treatment. Intravenous infusion $(40\;{\mu}L/min,\;10{\sim}100\;{\mu}g/kg\;per\;minute\;for\;60\;min)$ also increased blood pressure, while it decreased heart rate. These results indicate that endogenous L-arginine-NO pathway has separate central and peripheral mechanisms in regulating the cardiovascular function. The central effect may not be mediated via activation of renin-angiotensin system, but via, at least in part, activation of the sympathetic outflow.

  • PDF

Nitric Oxide Impairs the Recovery from Hemorrhagic Hypotension in Conscious Rats

  • Park, Yoon-Yub;Lee, Young-Man
    • The Korean Journal of Physiology and Pharmacology
    • /
    • 제2권3호
    • /
    • pp.345-351
    • /
    • 1998
  • The role of nitric oxide (NO) in the hemorrhagic hypotension was examined using a NO synthase inhibitor, $N^{\omega}-nitro-L-arginine$ methyl ester (L-NAME), in conscious rats. The rats were bled at a constant rate (2 ml/kg/min) through a femoral arterial catheter until the mean arterial pressure (MAP) was reduced by 50 mmHg. We studied the responses to hemorrhage under normal condition (Control) and after the pretreatment with 3 doses of L-NAME (1.6, 8, 40 mg/kg i.v. of NOX1.6, NOX8, and NOX40, respectively). Intravenous bolus injection of L-NAME produced a sustained increase in MAP and decrease in heart rate (HR). During hemorrhage, the MAP fell faster in the NOX8 and NOX40-treated groups than in Control group, but the control group showed same response to NOX1.6. HR greatly increased in NOX groups. The recovery from hemorrhagic hypotension was slowed in the control group, which was not treated with L-NAME. In comparison with the control group, NOX8 and NOX1.6-treated groups registered a significant recovery in MAP during the 15 min recovery period, but NOX40 brought about only a slight increase in MAP. NO precursor, L-arginine (150 mg/kg i.v.), produced significant bradycardic responses before and after hemorrhage and significant depressor response only after hemorrhagic hypotension regardless of pretreatment with L-NAME. These data suggest that the role of NO in blood pressure regulation is greater after hemorrhagic hypotension than basal condition, but the effect of NO can be detrimental to the recovery from hemorrhagic hypotension. In addition, the bradycardic response of L-arginine provides indirect evidence that NO may inhibit sympathetic activity, especially after hemorrhagic hypotension.

  • PDF

Effect of Cholecystokinin-pancreozymin on the Nitric Oxide Synthase Activity and Cyclic GMP Level in Rat Pancreatic Tis-sue

  • Seo, Dong-Wan;Nam, Suk-Woo;Nam, Tae-Kyun;Lee, Young-Jin;Ko, Young-Kwon;Lee, Hyang-Woo
    • Archives of Pharmacal Research
    • /
    • 제18권6호
    • /
    • pp.434-439
    • /
    • 1995
  • In pancreatic cells, NO formation is associated with increased levels of cGMP and endocrine/exocrine secretion. In the present study, the role of NO in the regulation of exocrine secretion was investigated in rat pancreatic tissues. Treatment of rat pancreatic tissue with sholecystokinin-pancreozymin (CCK-PZ) resulted in an significant increase in arginine conversion to citruline, the amount of nitrite/nitrate, the release of amylase, and the level of cGMP. Furthermore, CCK-PZ stimulated increase of amylase release and conversion of arginine to citrulline transformation were counteracted by the inhibitor of NO synthase, $N^G-nitro-L-arginine$ methyl ester. The results on the time course of CCK-PZ-induced citrulline formation within the first seconds of simulation. The kinetics of citrulline accumulation correlate well with those of cGMP rise, which further confirms the conclusion that NO mediates the response to CCK-PZ by cGMP.

  • PDF

장평활근의 수축성에 대한 홍삼 Saponins의 효과 (Effect of Red Ginseng Saponins on Intestinal Contractility)

  • 신동호;오정이
    • Journal of Ginseng Research
    • /
    • 제22권3호
    • /
    • pp.200-205
    • /
    • 1998
  • Isolated rabbit jejunal segments were used to study the effects of ginseng total saponins (GTS) , protopanaxatriol saponins (PT) and protopanaxadiol saponins (PD) on intestinal contractility. GTS, PT and PD caused a dose-dependent decrease in intestinal spontaneous movements, and PT was the most efficacious of them. The effect of GTS, PT and PD were not blocked by pretreatment with phentolamine (10-6 M), yohimbine (10-6 M), d1-propranolol (10-6 M), naloxone(10-6∼10-5M), Nu-nitro-L-arginine methyl ester (10-4 M), methylene blue (10-5M), and N-ethylmaleimide (10-4 M). However, pretreatment with tetraethylammonium chloride (3-10 mM) antagonized the effect of GTS, PT and PD. Furthermore, 4-amlnopyridine (1 mM) also inhibited the effect of GTS, PT and PD. The results suggest that GTS, PT and PD inhibited the spontaneous movements in isolated rebait jejunum by causing hyperpolarization through an activation of K+ channels directly.

  • PDF

오수유가 선천성고혈압흰쥐의 혈압에 미치는 영향 (Effects Evodiae Fructus on the Blood Pressure in Spontaneously Hypertensive Rats)

  • 정수연;정수연;정수연;강주희;최기환;김주일
    • Biomolecules & Therapeutics
    • /
    • 제8권4호
    • /
    • pp.305-310
    • /
    • 2000
  • The present study examined the effect of a methanol extract of Evodiae Fructus on the blood pressure in spontaneously hypertensive rats (SHR). The systolic blood pressure was measured after rats were pretreated with phentolamine, propranolol, or $N_{\omega}$-nitro-$_{L}$-arginine methyl ester(NAME) and subsequently received methanol extract of Evodiae Fructus. In SHR, intraperitoneal administration of methanol extract of Evodiae Fructus (0.5 mg/kg) produced antihypertensive effect that lasted for at least 4 hours. Antihypertensive effect of Evodiae Fructus was more stronger than that with $\alpha$-adrenergic receptor antagonist phentolamine and was not affected by $\beta$-adrenergic receptor antagonist propranolol. The antihypertensive effect of Evodiae Fructus was abolished by pretreatment of NAME. Our findings suggest Evodiae Fructus has an hypertensive effect, which may be mediated through nitric oxide synthesis.s.

  • PDF

혈압 및 장관 운동에 대한 상엽 수층분획의 아세틸콜린 유사효과 (Acetylcholine-1ike Effects of Mori Folium Water Fraction on Blood Pressure and Intestinal Movement in Rats)

  • 이주선;정인숙;김동현;박종세;정성현;진창배
    • 한국응용약물학회:학술대회논문집
    • /
    • 한국응용약물학회 1995년도 춘계학술대회
    • /
    • pp.111-111
    • /
    • 1995
  • 1. 혈압 및 맥박 실험 Acetylcholine과 상엽 수층분획을 단독으로 정맥에 투여한 경우 각각에서 농도 의존적으로 일시적인 혈압 강하 효과가 나타났고 빈맥 현상이 관찰되었다. Nitric Oxide 합성효소 억제제인 N$^{G}$ -Nitro-L-Arginine Methyl Ester(10 mg/kg I. v)를 전처리한 경우 위 두 약물에 의한 혈압강하효과는 공히 증가되어졌다. 또한 두 약물에 의한 혈압강하 효과는 Atropine Sulfate(1 mg/kg i.v) 전처리로 완전히 차단되었다. Cholinesterase 억제제인 Physostigmine (0.05 mg/kg i.v) 전처리는 상엽의 혈압강하 효과에 아무런 영향을 나타내지 못하였다. 2. 장관 실험 Acetylcholine과 상엽 수층분획을 organ bath에 첨가한 경우 각각에서 농도 의존적으로 장관 수축력을 증가시켰다. 혈압반응에서와 같이 장관실험에서도 두 약물에 의한 장관 수축력의 증가는 Atropine Sulfate(1$\times$$10^{-5}$ M)의 존재하에서는 완전히 차단되어졌다. 이상의 결과로부터 상엽 수층분획은 Acetylcholine과 유사한 작용을 지닌 물질을 함유하는 것으로 사료된다.

  • PDF