• Title/Summary/Keyword: N-methyl-N′-nitro-N-nitrosoguanidine

Search Result 205, Processing Time 0.023 seconds

Antimutagenic and Cytotoxic Effects of Acer ginnala Max. Bark Extracts (신나무 껍질 추출물의 항돌연변이원성 및 세포독성 효과)

  • Oh Heung-Seok;Cui Cheng-Bi;Choi Hyung-Taek;Kim Soo-Hyun;Jeon Mi-Sun;Ham Seung-Shi
    • Food Science and Preservation
    • /
    • v.11 no.4
    • /
    • pp.550-556
    • /
    • 2004
  • In the present study, we investigated the antimutagenic and cytotoxic effects of Acer ginnala Max. bark extract on S. typhimurium TA98, TA100 and cancer cell lines with Ames test and SRB assay, respectively. They were extracted with methanol and then fractionated using hexane, chloroform, ethyl acetate, butanol, and water to obtain the fractions. The inhibition rate of methanol ($200\;{\mu}g/plate$) of Acer ginnala Max. bark extract in the Salmonella typhimurium TA100 strain showed $83.3\%$ against the mutagenesis induced by N-methyl-N'-nitro-N-nitrosoguanidine (MNNG). In addition, the suppression of methanol extract with same concentration of in the Salmonella typhimurium TA98 and TA100 strains showed $80.3\%\;and\;92.7\%$ inhibition against 3-amino-1,4-dimethyl-5H-pyrido-(4,3-b)indol (Trp-P-1), respectively. The cytotoxicity effects of Acer ginnala Max. bark extract against the cell lines with human lung carcinoma (A549), human gastric carcinoma (AGS), human hepatocellular carcinoma (Hep3B) and human breast adenocarcinoma (MCF-7) were inhibited with the increase of the extract concentration. The treatment of 1.0 mg/mL Acer ginnala Max. bark methanol extract of methanol showed strong cytotoxicities of $77.3\%,\;90.4\%,\;88.9\%,\;and\;83.7\%$ against A549, AGS, Hep3B and MCF-7, respectively.

Studies on the Raw Starch Saccharifying Enzyme from the Aspergillus niger and Its Mutants (Aspergillus niger 및 그 변이주(變異株)의 생전분당화효소(生澱粉糖化酵素)에 관(關)한 연구(硏究))

  • Sohn, Cheon Bae;Park, Yoon Joong
    • Korean Journal of Agricultural Science
    • /
    • v.10 no.1
    • /
    • pp.166-185
    • /
    • 1983
  • Aspergillus niger IFO 8541 (NRRL 3112) was investigated through a series of UV rays and N-Methyl-N'-Nitro-N-Nitrosoguanidine (NTG) treatments to induce mutants that produce highly active raw starch saccharifying enzyme, and two mutants with strong enzymatic productivity were obtained. The mutants obtained were investigated for their fungal characters, condition of enzyme production, and other activities. Furthermore, the raw starch saccharifying enzyme was purified and the characteristics of purified enzyme were studied. The results obtained were summarized as follows; 1. The color of conidial head of UV-46 mutant obtained from UV rays treatment was changed to tan type and the gelatinated starch saccharifying enzyme productivity and the raw starch saccharifying enzyme productivity increased up to twice and 1.8 times compared to the productivities of original Aspergillus niger IFO 8541 cultured on the wheat bran, respectively. 2. The conidial head color of NG-41 mutant obtained from NTG treatment became lighter than that of parent strain. The gelatinated starch saccharifying enzyme productivity and raw starch saccharifying enzyme productivity increased about 1.8 times, and twice over the Aspergillus niger IFO 8541 parent strain cultured on wheat bran, respectively. The productivity of ${\alpha}$-amylase increased about 3 times more than the parent strain. 3. Two peaks of glucoanlylase and a peak of ${\alpha}$-amylase were obtained when enzyme solution of mutants and parent strain were passed through DEAE-Sephadex A-50 column chromatography. Glucoamylase I showed only gelatinated starch saccharifying enzyme activity. However, glucoamylase II (raw starch saccharifying enzyme) showed both raw starch saccharifying enzyme activity and gelatinated starch saccharifying enzyme activity. 4. Mutant, UV-46 was strengthened in glucoamylase II productivity and mutant NG-41 was strengthened in ${\alpha}$-amylase productivity. 5. Glucoamylase II of mutants and parent strain were appeared to have the same enzymatic properties. 6. Glucoamylase II of mutants and parent strain were recognized as simple enzyme through electrophoresis. 7. The glucoamylase II crystallized showed rhombic board type. 8. The molecular weight, isoelectric point, optimum pH, and optimum temperature of the glucoamylase II crystallized were estimated as 76,000, 3.4, 3.5 and $60^{\circ}C$, respectively.

  • PDF

Antimutagenicity and Cytotoxic Effects of Methanol Extract from Deep Sea Water Salt and Sea Tangle Added Soybean Paste (Doenjang) (해양심층수염 및 다시마분말을 첨가한 개량식 된장의 항돌연변이원성 및 암세포성장억제에 미치는 영향)

  • Ham, Seung-Shi;Kim, Soo-Hyun;Yoo, Su-Jong;Oh, Hyun-Taek;Choi, Hyun-Jin;Chung, Mi-Ja
    • Journal of the Korean Society of Food Science and Nutrition
    • /
    • v.37 no.4
    • /
    • pp.416-421
    • /
    • 2008
  • This study was performed to determine the antimutagenic and anticytotoxic effects of soybean paste (doenjang) added deep sea water salt and see tangle in Salmonella Typhimurium TA98, TA100 and human cancer cell lines. In the Ames test, methanol extract of doenjang did not exhibit any mutagenicity but showed substantial inhibitory effects against mutation induced by N-methyl-N'-nitro-N-nitrosoguanidine (MNNG) and 4-nitroquinoline-1-oxide (4NQO). The methanol extracts of doenjang ($200{\mu}g$/plate) added deep sea salt and see tangle (doenjang C) showed approximately 89.1% and 70% inhibitory effect on the mutagenesis induced by MNNG and 4NQO against TA100 strain, whereas 84.4% inhibitions were observed on the mutagenesis induced by 4NQO against TA98 strain. The cytotoxic effects of doenjang methanol extracts against the cell lines with human cervical adenocarcinoma (HeLa), human hepatocellular carcinoma (Hep3B), human gastric carcinoma (AGS), human lung carcinoma (A549) and human breast adenocarcinoma (MCF-7) were inhibited with the increase of the extract concentration. The treatment of 1.0 mg/mL doenjang C of methanol extracts showed strong cytotoxicities of 71%, 74.4%, 66.2%, 77.3%, and 71.2% against HeLa, Hep3B, AGS, A549, and MCF-7, respectively. In contrast 1 mg/mL treatment of doenjang C methanol extracts had only $10{\sim}40%$ cytotoxicity on normal human embryonal kidney cell (293). Doenjang methanol extract inhibited significantly the tumor growth in mice injected sarcoma-180 cells. Especially, doenjang C methanol extract showed an inhibition of tumor cell activity of 33% by the administration of 25 mg/kg methanol extracts.

Antimutagenic and Cytotoxicity Effects of Agaricus blazei Murill Extracts (아가리쿠스버섯(Agaricus blazei Murill) 추출물의 항돌연변이원성 및 세포독성 효과)

  • Ji, Jeong-Hwan;Kim, Mi-Nam;Choi, Kun-Pyo;Chung, Cha-Kwon;Ham, Seung-Shi
    • Korean Journal of Food Science and Technology
    • /
    • v.32 no.6
    • /
    • pp.1371-1378
    • /
    • 2000
  • This study was performed to determine the antimutagenic and cytotoxic effect of Agaricus blazei Murill methanol extract on Salmonella typhimurium TA98, TA100 and human cancer cell lines using Ames test and cytotoxicity assay, respectively. In Ames test, methanol extract from A. blazei Murill did not exhibit any mutagenicity and most of the samples showed high antimutagenic effects against mutation induced by N-methyl-N'-nitro-N-nitrosoguanidine(MNNG), 4-nitroquinoline-1-oxide(4NQO), 3-amino-1,4-dimethyl-5H-pyrido [4,3-b] indol(Trp-P-1) and $benzo({\alpha})pyrene(B({\alpha})P)$. The methanol extracts of A. blazei Murill$(200\;{\mu}g/plate)$ showed approximately 92.4%, 81.9% and 83.4% inhibitory effect on the mutagenesis induced by 4NQO, Trp-P-1 and $B({\alpha})P$ against TA98 strain, whereas 87.3%, 94.7%. 92.3% and 89.9% inhibitions were observed on the mutagenesis induced by MNNG, 4NQO, Trp-P-1 and $B({\alpha})P$ against TA100 strain. The solvent fractions of methanol extracts from A. blazei Murill except water fraction showed high antimutagenic effects of $70{\sim}90%$ against mutation induced by MNNG, 4NQO. Trp-P-1 and $B({\alpha})P$. In anticancer effects of A. blazei Murill extract and fraction against cancer cell lines including human breast adenocarcinoma(MCF7), human lung carcinoma(A549), human fibrosarcoma(HT1080), human hepatocellular carcinoma(Hep3B), human epitheloid carcinoma(HeLa), human gastric carcinoma(KATO III) and human chronic myelogenous leukemia(K562) were investigated. The treatment of 1 mg/mL A. blazei Murill extracts had the highest cytotoxicity with 91.9% against HeLa, followed by KATO III(88.7%), A549(86.5%) and Hpe3B(84.3%). Whereas 1 mg/mL treatment of A. blazei Murill extracts had only $10{\sim}40%$ cytotoxicity on human normal liver cell (WRL68).

  • PDF

Antioxidative, Antimutagenic and Cytotoxic Effects of Prunus armeniaca Extracts (살구 추출물의 항산화성, 항돌연변이성 및 세포독성 효과)

  • Yoo, Su-Jung;Kim, Soo-Hyun;Jun, Mi-Sun;Oh, Hyun-Taek;Choi, Hyun-Jin;Ham, Seung-Si
    • Food Science and Preservation
    • /
    • v.14 no.2
    • /
    • pp.220-225
    • /
    • 2007
  • This study was performed to measure the antioxidative, antimutagenic, and cytotoxic properties of Prunus armeniaca using the DPPH (1, 1-diphenyl-2-picrylhydrazyl) free radical donating method, the Ames test, and cytotoxicity measurements, respectively. Electron-donating abilities were 48.3, 43.9, 14.8 and 12.9 per g dry matter of P. armeniaca seed (PAS), P. armeniaca flesh(PAF), butylated hydroxytoluene, and ${\alpha}-tocopherol$, respectively. The direct antimutagenic effects of an ethanol extract of P. armeniaca were examined in Ames tests using Salmonella typhimurium TA98 and TA100 as reporter organisms. In the Ames test, the ethanol extract of P. armenicaca alone did not exhibit any mutagenicity but the extract did show substantial inhibitory effects against mutations induced by N-methyl-N'-nitro-N-nitrosoguanidine(MNNG) and 4-nitroquinoline-1-oxide(4NQO). The ethanol extract of PAS(200g dry matter/plate) inhibited strain TA98 mutagenesis induced by 4NQO by ca. 37.9%, and mutation inhibition values of 42.1% and 69.4%, respectively, were observed when 4NQO and MNNG acted on the TA100 strain. The cytotoxic effects of ethanol extracts of P. armeniaca against cell lines of human lung carcinoma(A549), human breast adenocarcinoma(MCF-7), human hepatocellular carcinoma(Hep3B), human cervical adenocarcinoma(HeLa), and human gastric carcinoma(AGS) rose with increases in extract concentration. An ethanol extract(4mg/mL dry matter) of PAF showed strong cytotoxicities of 88.2%, 58%, 72.8%, 89.4%, and 91.9% against A549, AGS, MCF-7, HeLa, and Hep3B cells, respectively. In contrast, the same extract showed only 13 37% cytotoxicity for a nomal human kiney cell line(293). It is suggested that P. armeniaca possesses useful antioxidative, antimutagenic, and anticancer properties.