• 제목/요약/키워드: N-methyl-D-aspartic acid

검색결과 21건 처리시간 0.022초

Targeting nerve growth factor for pain relief: pros and cons

  • Sahar Jaffal;Raida Khalil
    • The Korean Journal of Pain
    • /
    • 제37권4호
    • /
    • pp.288-298
    • /
    • 2024
  • Nerve growth factor (NGF) is a neurotrophic protein that has crucial roles in survival, growth and differentiation. It is expressed in neuronal and non-neuronal tissues. NGF exerts its effects via two types of receptors including the high affinity receptor, tropomyosin receptor kinase A and the low affinity receptor p75 neurotrophin receptor highlighting the complex signaling pathways that underlie the roles of NGF. In pain perception and transmission, multiple studies shed light on the effects of NGF on different types of pain including inflammatory, neuropathic, cancer and visceral pain. Also, the binding of NGF to its receptors increases the availability of many nociceptive receptors such as transient receptor potential vanilloid 1, transient receptor potential ankyrin 1, N-methyl-D-aspartic acid, and P2X purinoceptor 3 as well as nociceptive transmitters such as substance P and calcitonin gene-related peptide. The role of NGF in pain has been documented in pre-clinical and clinical studies. This review aims to shed light on the role of NGF and its signaling in different types of pain.

Antioxidant and Neuroprotective Effects of Hesperidin and its Aglycone Hesperetin

  • Cho, Jung-Sook
    • Archives of Pharmacal Research
    • /
    • 제29권8호
    • /
    • pp.699-706
    • /
    • 2006
  • The present study evaluated antioxidant and neuroprotective activities of hesperidin, a flavanone mainly isolated from citrus fruits, and its aglycone hesperetin using cell-free bioassay system and primary cultured rat cortical cells. Both hesperidin and hesperetin exhibited similar patterns of 1,1-diphenyl-2-picrylhydrazyl radical scavenging activities. While hesperidin was inactive, hesperetin was found to be a potent antioxidant, inhibiting lipid peroxidation initiated in rat brain homogenates by $Fe^{2+}$ and L-ascorbic acid. In consistence with these findings, hesperetin protected primary cultured cortical cells against the oxidative neuronal damage induced by $H_2O_2$ or xanthine and xanthine oxidase. In addition, it was shown to attenuate the excitotoxic neuronal damage induced by excess glutamate in the cortical cultures. When the excitotoxicity was induced by the glutamate receptor subtype-selective ligands, only the N-methyl-D-aspartic acid-induced toxicity was selectively and markedly inhibited by hesperetin. Furthermore, hesperetin protected cultured cells against the $A_{{\beta}(25-35)}-induced$ neuronal damage. Hesperidin, however, exerted minimal or no protective effects on the neuronal damage tested in this study. Taken together, these results demonstrate potent antioxidant and neuroprotective effects of hesperetin, implying its potential role in protecting neurons against various types of insults associated with many neurodegenerative diseases.

별불가사리 렉틴의 특성 및 암 세포 성장저해 효과 (Characteristics and Cancerostatic Activity of the Starfish Lectin)

  • 전경희;박채수;박원학;최수정;소명숙;정시련
    • 약학회지
    • /
    • 제41권4호
    • /
    • pp.421-432
    • /
    • 1997
  • A new lectin was partially purified from starfish,Asterina pectinifera by means of physiological saline extraction, salt fractionation, ion exchange chromatography and hy droxyapatite chromatography, and it was named APL. The biochemical properties of the APL were characterized. In addition, its effects on lymphocyte mitogenicity and cancer cell agglutinability were tested. The APL agglutinated nonspecifically human erythrocytes and rabbit blood cells. Agglutinability was decreased to 30% of control activity below pH 5 and above pH 9 and was relatively unstable at increasing temperatures above 60$^{\circ}C$. The activity was reduced by addition of two kinds of metal ions, $Ba^{2+},\;Mn^{2+}$ and chelating agent, EDTA. APL was proved to be glycoproteins containing 9% sugars. For carbohydrate specificity, it was found that the activity of APL was inhibited by D(+)-glucosamine, D(+)-galactosamine, stachyose, N-acetyl-galactosamine and methyl-${\alpha}$-D-galactopyranoside among 35 sugars tested. In amino acid composition, the contents of acidic amino acids such as aspartic acid and glutamic acid were relatively high. This result suggest that the isoelectric point would be in a lower range. APL was found that it promotes the division of human lymphocytes. APL was proved to be a potent agglutinin for cancer cells such as HeLa, L929 and L1210 cells. Significant changes on the HeLa cell surfaces affected by APL were observed under the electron microscope.

  • PDF

Hepatoprotective effect of sodium hydrosulfide on hepatic encephalopathy in rats

  • Kwon, Kyoung Wan;Nam, Yoonjin;Choi, Won Seok;Kim, Tae Wook;Kim, Geon Min;Sohn, Uy Dong
    • The Korean Journal of Physiology and Pharmacology
    • /
    • 제23권4호
    • /
    • pp.263-270
    • /
    • 2019
  • Hydrogen sulfide is well-known to exhibit anti-inflammatory and cytoprotective activities, and also has protective effects in the liver. This study aimed to examine the protective effect of hydrogen sulfide in rats with hepatic encephalopathy, which was induced by mild bile duct ligation. In this rat model, bile ducts were mildly ligated for 26 days. Rats were treated for the final 5 days with sodium hydrosulfide (NaHS). NaHS ($25{\mu}mol/kg$), 0.5% sodium carboxymethyl cellulose, or silymarin (100 mg/kg) was administered intraperitoneally once per day for 5 consecutive days. Mild bile duct ligation caused hepatotoxicity and inflammation in rats. Intraperitoneal NaHS administration reduced levels of aspartate aminotransferase and alanine aminotransferase, which are indicators of liver disease, compared to levels in the control mild bile duct ligation group. Levels of ammonia, a major causative factor of hepatic encephalopathy, were also significantly decreased. Malondialdehyde, myeloperoxidase, catalase, and tumor necrosis factor-${\alpha}$ levels were measured to confirm antioxidative and anti-inflammatory effects. N-Methyl-D-aspartic acid (NMDA) receptors with neurotoxic activity were assessed for subunit NMDA receptor subtype 2B. Based on these data, NaHS is suggested to exhibit hepatoprotective effects and guard against neurotoxicity through antioxidant and anti-inflammatory actions.

구인(蚯蚓) 추출물이 흰쥐의 뇌허혈과 세포에 미치는 효과 (Effects of Lumbricus Extract on Cerebral Ischemia and Cells in Rats)

  • 유덕선;염승룡;권영달;송용선
    • 한방재활의학과학회지
    • /
    • 제20권3호
    • /
    • pp.1-11
    • /
    • 2010
  • Objectives : This study was designed to investigate the effects of Lumbricus extract(LE) on the regional cerebral blood flow(rCBF) in ischemic rats, further to determine the mechanism of action of LE, and the effects that LE inhibits lactate dehydrogenase(LDH) activity in brain cells. Methods and materials : This study, ischemic rats were divided into total four group: control group(n=6), experimental group I (LE treated group)(n=6), experimental group II(LE treated group after pretreatment with indomethacin)(n=6), experimental group III(LE treated group after pretreatment with methylene blue)(n=6). And the measurement that LE inhibits LDH activity in the damage to brain cells to N-methyl-D-aspartic acid(NMDA). The changes of rCBF were determinated by laser-doppler flowmetry(LDF), and LDH activity was determinated by microplate reader in vitro. Results : 1. The rCBF was significantly improved by LE(10 mg/kg, i.p.) during the period of cerebral reperfusion, compared with the control group. 2. The rCBF was significantly increased by LE after pretreatment with indomethacin(1 mg/kg, i.p.), an inhibitor of cyclooxygenase, during the period of cerebral reperfusion, compared with the LE group, and rCBF was accelerated by LE after pretreatment with methylene blue($10{\mu}g/kg$, i.p.) an inhibitor of guanylate cyclase during the period of cerebral reperfusion, compared with the control group. 3. LE significantly inhibited LDH activity in vitro in a dose-dependent manner. Conclusions : From the above results, these were suggested that Lumbricus had anti-ischemia action in connection with cyclooxygenase and might prevent the brain cells death through inhibited LDH activity.

고정화 Thermolysin을 사용한 아스파탐 전구체의 최적 합성조건 선정 (Synthetic Conditions of an Aspartame Precursorby Immobilized Thermolysin)

  • 한민수;김우정
    • 한국식품과학회지
    • /
    • 제27권4호
    • /
    • pp.564-570
    • /
    • 1995
  • Aspartame의 전구체인 BzAPM을 고정화 thermolysin으로 합성할 때 최적 조건을 찾고자 기질의 농도, 반응 pH 및 온도 그리고 금속이온, benzoic acid, Phe, NaCl의 농도가 어떤 영향을 주는지 조사하였다. 반응기질인 PheOMe와 BzAsp를 25% DMSO 및 20% PEG 200이 함유된 유기 용매계에서 반응시켰다. Bz-Asp의 농도를 100 mM로 일정하게 하였을 때 BzAPM의 합성 속도는 PheOMe의 농도가 증가함에 따라 직선형으로 증가하였으며, PheOMe의 농도를 300 mM로 하고 Bz-Asp의 농도를 변경시킨 경우에는 200 mM에서 반응 속도가 최고에 달하였다. BzAPM의 생산을 위한 최적 pH는 6.1 전후로 나타났으며, 최적 반응 온도는 $40^{\circ}C$이었다. 2가 금속 이온을 5mM로 첨가했을 때, $Zn^{2+},\;Mg^{2+},\;Fe^{2+},\;Cu^{2+}$이온은 고정화 thermolysin의 BzAPM 합성 수율을 저하시켰으나, $Co^{2+}$ 이온은 합성 수율을 2배 정도 증가시키는 것으로 확인되었다. $Co^{2+}$ 이온을 $Ca^{2+}$ 이온과 함께 첨가하면 $Co^{2+}$이온만 첨가할 때보다 합성 수율이 높게 나타났다. Benzoic acid와 Phe이 BzAPM의 합성을 저해하는 것으로 나타났으며, NaCl도 10% 농도로 첨가시에 합성을 약 25% 저하시켰다.

  • PDF

L-Glutamate에 의한 PC12 세포의 고사성 사망 (Apoptotic Process is Involved in the L-Glutamate-Induced PC12 Cell Death)

  • 성기욱;정경희;김성윤;강정혜;이상복
    • The Korean Journal of Physiology and Pharmacology
    • /
    • 제1권6호
    • /
    • pp.699-705
    • /
    • 1997
  • Although it is known that neuronal cell death during development occurs by apoptosis, the mechanisms underlying excitatory amino acid-induced neuronal cell death remain poorly understood. In this study we have examined the mechanism by which L-glutamate, an excitatory amino acid neurotransmitter, induces cell death in PC12 cell lines. To characterize cell death, we employed sandwich enzyme-linked immunosorbent assay(ELISA) method for cellular DNA fragmentation, DNA agarose gel electrophoresis and chromatin staining by acridine orange and ethidium bromide after treating the PC12 cells with L-glutamate. L-Glutamate caused dose-dependent cell death with a maximum at 24 hrs after the treatment. These cellular fragmentation was blocked by pretreatment of MK-801, a noncompetitive N-methyl-D-aspartic acid(NMDA) receptor antagonist, and nerve growth factor(NGF). Analysis of DNA integrity from L-glutamate-treated cells revealed cleavage of DNA into regular sized fragments, a biochemical hallmark of apoptosis. The PC12 cells that were induced to die by L-glutamate treatment exhibited classical chromatin condensation under the light microscopy after acridine orange and ethidium bromide staining. These results suggest that apoptosis is one of the key features that are involved in L-glutamate-induced excitotoxic cell death in PC12 cells, and these cell death are mediated by NMDA receptor and depend on NGF.

  • PDF

Neuroprotective and Antioxidant Effects of the Butanol Fraction Prepared from Opuntia ficus-indica var. saboten

  • Cho, Jung-Sook;Han, Chang-Kyun;Lee, Yong-Sup;Jin, Chang-Bae
    • Biomolecules & Therapeutics
    • /
    • 제15권4호
    • /
    • pp.205-211
    • /
    • 2007
  • The fruits and stems of Opuntia ficus-indica var. saboten have been reported to exhibit a variety of pharmacological actions, including antioxidant, analgesic, anti-inflammatory, and anti-ulcer effects. In the present study, we evaluated effects of the butanol fraction (SK OFB901) prepared from the 50% ethanol extract of the stems on various types of neuronal injuries induced by oxidative stress, excitotoxins, and amyloid ${\beta}\;(A_{\beta})$ in primary cultured rat cortical cells. Its antioxidant and radical scavenging activities were also evaluated by cell-free bioassays. We found that SK OFB901 strongly inhibited the oxidative neuronal damage induced by $H_2O_2$ or xanthine/xanthine oxidase. In addition, it exhibited marked inhibition of the excitotoxic neuronal damage induced by glutamate, N-methyl-D-aspartic acid, or kainate. Furthermore, the $A_{\beta(25-35)}$-induced neurotoxicity was also significantly attenuated by SK OFB901. It was found to inhibit lipid peroxidation initiated by $Fe^{2+}$ and L-ascorbic acid in rat brain homogenates and scavenge 1,1-diphenyl-2-picrylhydrazyl free radicals. These results indicate that the butanol fraction prepared from the stems of Opuntia ficus-indica var. saboten exerts potent antioxidant and neuroprotective effects through multiple mechanisms, implying its potential applications for the prevention or management of neurodegenerative disorders associated with oxidative stress, excitotoxicity, and $A{\beta}$.

Participation of NMDA and non-NMDA glutamate receptors in the formalin-induced inflammatory temporomandibular joint nociception

  • Yang, Gwi-Y.;Lee, Ju-H.;Ahn, Dong-K.
    • International Journal of Oral Biology
    • /
    • 제32권2호
    • /
    • pp.59-65
    • /
    • 2007
  • It has been well known that excitatory amino acids, primarily glutamate, are involved in the transmission of nociception in pathological and physiological conditions in the spinal and brainstem level. Recently, peripheral glutamate also play a critical role in the peripheral nociceptive transmissions. The present study investigated the role of N-methyl-D-aspartic acid (NMDA) or non-NMDA ionotropic glutamate receptors in formalin-induced TMJ pain. Experiments were carried out on male Sprague-Dawley rats weighing 220-280 g. Intra-articular injection was performed under halothane anesthesia. Under anesthesia, AP-7 (10, $100\;{\mu}M$, $1\;mM/20\;{\mu}L$), a NMDA receptor antagonist, or CNQX disodium salt (0.5, 5, 50, $500\;{\mu}M/20\;{\mu}L$), a non-NMDA receptor antagonist, were administered intra-articularly 10 min prior to the application of 5% formalin. For each animal, the number of behavioral responses, such as rubbing and/or scratching the TMJ region, was recorded for nine successive 5-min intervals. Intra-articular pretreatment with 1 mM of AP-7 or $50\;{\mu}M$ CNQX significantly decreased the formalin-induced scratching behavioral responses during the second phase. Intra-articular pretreatment with $500\;{\mu}M$ of CNQX significantly decreased the formalin-induced scratching behavior during both the first and the second phase. These results indicate that the intra-articular administration of NMDA or non-NMDA receptor antagonists inhibit formalin-induced TMJ nociception, and peripheral ionotropic glutamate receptors may play an important role in the TMJ nociception.

우유속 락토페린의 NMDA 수용체를 통한 진통효과 (Effect of NMDA Receptor on Analgesic Effect of Bovine Milk-derived Lactoferrin (BLF))

  • 전용준;윤재석;임화경;박기숙;나한광;김동섭;김주일;윤여창;최기환
    • 약학회지
    • /
    • 제49권5호
    • /
    • pp.370-374
    • /
    • 2005
  • Lactoferrin is a multifunctional protein that is found in milk, neutrophils, and other biological fluids, and its receptors have also been identified in the central nervous system. Recently, it was reported that bovine milk-derived lacto­ferrin (BLF) produced analgesia via a $\mu$-opioid receptor-mediated response in the spinal cord. However the precise mech­anism of this analgesic effect is remains unclear. In Randall-Selitto paw pressure study, each single administration of morphine (10 mg/kg) and BLF (50, 100 and 200 mg/kg) induced analgesia, however, NMDA receptor antagonist MK-801 (0.1, 0.2 and 0.3 mg/kg), inhibited analgesia induced by BLF (100 mg/kg). Intracerebroventricular infusion (I.C.V.) of N­methyl-D-aspartic acid (NMDA) ($0.3\;{\mu}g/8.0\;{\mu}l/hr/day$), as a NMDA receptor agonist, reversed inhibition of MK-801 (0.3 mg/kg) on analgesia induced by BLF (100 mg/kg). These results suggest that BLF have analgesic effect, through NMDA recep­tor activation.