N-gram analysis casts a new look at the n-word cluster in use different from the previously known idioms. It analyzes a corpus of English textbooks for frequently occurring n consecutive words mechanically using a concordance software, which is different from the previously known idioms. The current paper aims at extracting and comparing 4-gram words clusters between South Korean high school English textbooks and its North Korean counterpart. The classification criteria includes number of tokens and types between the two across oral and written languages in the textbooks. The criteria also use the grammatical categories and functional categories to classify and compare the 4-gram words clusters. The grammatical categories include noun phrases, verb phrases, prepositional phrases, partial clauses and others. The functional categories include deictic function, text organizers, stance and others. The findings are: South Korean high school English textbook contains more tokens and types in both oral and written languages. Verb phrase and partial clause 4-grams are grammatically most frequently encountered categories across both South and North Korean high school English textbooks. Stance is most dominant functional category in both South and North Korean English textbooks.
Annual Conference on Human and Language Technology
/
2013.10a
/
pp.139-141
/
2013
다양한 콘텐츠가 생성됨에 따라 신조어 및 미등록어도 다양한 형태로 나타나고 있다. 이러한 신조어 및 미등록어는 텍스트 처리 단계에서 오분석 되어 성능 저하의 원인이 된다. 본 논문은 이러한 문제를 해결하기 위해서 대량의 문서로부터 신조어 및 미등록 어휘를 추정하는 방법에 대해서 제안한다. 제안 방법은 대량의 문서로부터 음절 n-gram을 추출한 뒤, 각 n-gram에서 n을 한음절 축소 및 확장 시켜, (n+1)gram, (n-1)gram을 추가적으로 추출한다. 추출된 음절 n-gram을 기준으로 (n+1)gram, (n-1)gram과의 빈도 차이를 계산하여 빈도차가 급격하게 발생하는 구간을 신조어 및 미등록 어휘로 추정한다. 실험결과 신조어 뿐만 아니라 트위터, 미투데이 등과 같은 도메인에 종속적인 미등록 어휘도 추출되는 것을 확인할 수 있었다.
The Journal of the Convergence on Culture Technology
/
v.10
no.3
/
pp.391-396
/
2024
This study proposes a novel reverse N-Gram approach to overcome the limitations of traditional N-Gram methods and enhance performance in building an entity dictionary specialized for the healthcare sector. The proposed reverse N-Gram technique allows for more precise analysis and processing of the complex linguistic features of healthcare-related big data. To verify the efficiency of the proposed method, big data on healthcare and digital health announced during the Consumer Electronics Show (CES) held each January was collected. Using the Python programming language, 2,185 news titles and summaries mentioned from January 1 to 31 in 2010 and from January 1 to 31 in 2024 were preprocessed with the new reverse N-Gram method. This resulted in the stable construction of a dictionary for natural language processing in the healthcare field.
The Journal of Korean Association of Computer Education
/
v.13
no.6
/
pp.79-89
/
2010
In this paper, we proposed a method to find out similar sentences from documents to detect plagiarized documents. The proposed model adapts LSA and N-gram techniques to detect every type of Korean plagiarized sentence type. To evaluate the performance of the model, we constructed experimental data using students' essays on the same theme. Students made their essay by intentionally plagiarizing some reference documents. The experimental results showed that our proposed model outperforms the conventional N-gram model, Vector model, LSA model in precision, recall, and F measures.
Journal of the Korean Society of Marine Environment & Safety
/
v.25
no.4
/
pp.405-412
/
2019
SOLAS requires that ECDIS be installed on ships of more than 500 gross tonnage engaged in international navigation until the first inspection arriving after July 1, 2018. Several accidents related to the use of ECDIS have occurred with its installation as a new major navigation instrument. The 12 incident reports issued by MAIB, BSU, BEAmer, DMAIB, and DSB were analyzed, and the cause of accident was determined to be related to the operation of the navigator and the ECDIS system. The text was analyzed using the R-program to quantitatively analyze words related to the cause of the accident. We used text mining techniques such as Wordcloud, Wordnetwork and Wordweight to represent the importance of words according to their frequency of derivation. Wordcloud uses the N-gram model as a way of expressing the frequency of used words in cloud form. As a result of the uni-gram analysis of the N-gram model, ECDIS words were obtained the most, and the bi-gram analysis results showed that the word "Safety Contour" was used most frequently. Based on the bi-gram analysis, the causative words are classified into the officer and the ECDIS system, and the related words are represented by Wordnetwork. Finally, the related words with the of icer and the ECDIS system were composed of word corpus, and Wordweight was applied to analyze the change in corpus frequency by year. As a result of analyzing the tendency of corpus variation with the trend line graph, more recently, the corpus of the officer has decreased, and conversely, the corpus of the ECDIS system is gradually increasing.
Journal of the Korea Institute of Information Security & Cryptology
/
v.32
no.2
/
pp.181-192
/
2022
The emergence of new malware is incapacitating existing signature-based malware detection techniques., and applying various anti-analysis techniques makes it difficult to analyze. Recent studies related to signature-based malware detection have limitations in that malware creators can easily bypass them. Therefore, in this study, we try to build a machine learning model that can detect and classify the anti-analysis techniques of packers applied to malware, not using the characteristics of the malware itself. In this study, the n-gram opcodes are extracted from the malicious binary to which various anti-analysis techniques of the commercial packers are applied, and the features are extracted by using TF-IDF, and through this, each anti-analysis technique is detected and classified. In this study, real-world malware samples packed using The mida and VMProtect with multiple anti-analysis techniques were trained and tested with 6 machine learning models, and it constructed the optimal model showing 81.25% accuracy for The mida and 95.65% accuracy for VMProtect.
The agglutinative nature of Korean language makes the problem of automatic indexing of Korean much different from that of Indo-Eroupean languages. Especially, indexing with compound nouns in Korean is very problematic because of the exponential number of possible analysis and the existence of unknown words. To deal with this compound noun indexing problem, we propose a new indexing methods which combines the merits of the morpheme-based indexing methods and the n-gram based indexing methods. Through the experiments, we also find that the best performance of n-gram indexing methods can be achieved with 1.75-gram which is never considered in the previous researches.
Sun Woo Park;Ji Young Park;Hyoung Soo Choi;Hyunju Lee
Pediatric Infection and Vaccine
/
v.31
no.1
/
pp.46-54
/
2024
Purpose: This study aimed to identify the pathogens of bloodstream infection in children with underlying hemato-oncologic diseases, analyze susceptibility patterns, compare temporal trends with those of previous studies, and assess empirical antimicrobial therapy. Methods: Retrospective review study of children bacteremia in hemato-oncologic diseases was conducted at Seoul National University Bundang Hospital from January 2013 to July 2023. Results: Overall, 98 episodes of bacteremia were observed in 74 patients. Among pathogens isolated, 57.1% (n=56) were Gram-positive bacteria, 38.8% (n=38) were Gram-negative bacteria, and 4.1% (n=4) were Candida spp. The most common Gram-positive bacteria were coagulase-negative staphylococci (n=21, 21.4%) and Staphylococcus aureus, (n=14, 14.3%) whereas the most common Gram-negative bacteria were Klebsiella pneumoniae (n=16, 16.3%) and Escherichia coli (n=10, 10.2%). The susceptibility of Gram-positive bacteria to penicillin, oxacillin, and vancomycin was 11.5%, 32.7%, and 94.2%, respectively and the susceptibility of Gram-negative bacteria to cefotaxime, piperacillin/tazobactam, imipenem, gentamicin, and amikacin was 68.6%, 80%, 97.1%, 82.9%, and 91.4%, respectively. Methicillin-resistant S. aureus was detected in 1 strain and among Gram-negative strains, extended spectrum β-lactamase accounted for 28.9% (12/38). When analyzing the antibiotic susceptibility and empirical antibiotics, the mismatch rate was 25.5% (n=25). The mortality rate of children within 30 days of bacteremia was 7.1% (n=7). Conclusions: Empirical antibiotic therapy for bacteremia in children with hemato-oncologic diseases should be based on the local antibiogram in each institution and continuous monitoring is necessary.
Mood classification of blog text is an interesting problem, with a potential for a variety of services involving the Web. This paper introduces an approach to mood classification enhancements through the normalized negation n-grams which contain mood clues and corpus-specific term weighting(CSTW). We've done experiments on blog texts with two different classification methods: Enhanced Mood Flow Analysis(EMFA) and Support Vector Machine based Mood Classification(SVMMC). It proves that the normalized negation n-gram method is quite effective in dealing with negations and gave gradual improvements in mood classification with EMF A. From the selection of CSTW, we noticed that the appropriate weighting scheme is important for supporting adequate levels of mood classification performance because it outperforms the result of TF*IDF and TF.
Creation and Sharing of information which is structured data as well as various unstructured data. makes progress actively through the spread of mobile. Recently, Big Data extracts the semantic information from SNS and data mining is one of the big data technique. Especially, the general emotion analysis that expresses the collective intelligence of the masses is utilized using large and a variety of materials. In this paper, we propose the emotion prediction system architecture which extracts the significant keywords from social network paragraphs using n-gram and Korean morphological analyzer, and predicts the emotion using SVM and these extracted emotion features. The proposed system showed 82.25% more improved recall rate in average than previous systems and it will help extract the semantic keyword using morphological analysis.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.