• Title/Summary/Keyword: N-demethylation

Search Result 32, Processing Time 0.016 seconds

DEMETHYLATION OF THE SEX-DETERMINING REGION Y GENE PROMOTER AND INCIDENCE OF DISORDER OF SEX DEVELOPMENT IN CLONED DOG MALES

  • K.C. HWANG;Y.K. CHOI;Y.I. JEONG;K.B. PARK;E.J. CHOI;Y.W. JEONG;M.S. HOSSEIN;S.H. HYUN;E.-B. JEUNG;W.S. HWANG
    • The Korean Journal of Physiology and Pharmacology
    • /
    • v.71 no.3
    • /
    • pp.351-358
    • /
    • 2020
  • Canine cloning is occasionally accompanied by abnormal sexual development. Some male donor cells produce cloned pups with female external genitalia and complete male gonadal dysgenesis, which is classified as an XY disorder of sex development (XY DSD). In this study, we examine the potential of 5-aza-2'-deoxycytidine (5-aza-dC), a DNA methyltransferase inhibitor, to reduce the phenotypic abnormality XY DSD in somatic cell nuclear transfer (SCNT)-derived pups. We used a 9-year-old normal male German Shepherd dog as a cell donor. Donor cells were treated with 10 nM 5-aza-dC for 4 days before being used for SCNT. At the same stage of cell development, significantly lower levels of DNA methylation of the sex-determining region Y (SRY) promoter was observed in the treated donor cells compared to that in the untreated cells (95.2% versus 53.3% on day 4 for the control and treated groups, respectively). No significant differences were observed in the control or treatment groups concerning fusion rate, pregnancy rate (30 days or entire period), the number of pups, or the incidence of XY DSD. However, more XY DSD dogs were observed in the control group (31.25%) than in the treatment group (14.29%). Hypermethylation of the SRY promoter was observed in the XY DSD cloned pups in both the treatment (84.8%) and control groups (91.1 ± 1.4%) compared to the methylation level in the phenotypically normal male pups of the treatment (23.2 ± 20.9%) and control groups (39.1 ± 20.1%). These results suggest that 5-aza-dC treatment of donor cells can reduce the methylation level of the SRY promoter in donor cells, and thus, 5-aza-dC is advantageous for reducing the incidence of XY DSD in canine cloning.

The Effects of Pueraria and Rehmannia Glutinosa Intake and Exercise on Epigenetic Modification in Ovariectomized Rat Skeletal Muscle (난소 절제 쥐의 골격근에서 갈근 및 지황 섭취와 운동이 후성 유전적 변화에 미치는 영향)

  • Jung, Hyun Ji;Kim, Hye Jin;Kwon, Oran;Lee, Won Jun
    • Journal of Life Science
    • /
    • v.25 no.11
    • /
    • pp.1214-1222
    • /
    • 2015
  • The purpose of this study was to determine the effect of Pueraria lobate-root based combination supplementation containing Rehmannia glutinosa and exercise on histone modification in ovariectomized rat hindlimb skeletal muscle. Sixty rats were fed with high fat diet and randomly assigned into the following groups for 8 weeks: 1)HSV; High fat+Sedentary+Vehicle, 2)HSP; High fat+Sedentary+PR, 3)HSH; High fat+Sedentary+Estradiol, 4)HEV; High fat+Ex+Vehicle, 5)HEP; High fat+Ex+PR, 6)HEH; High fat+Ex+Estradiol. Exercise consisted of low intensity treadmill exercise(1-4th wk:15 m/min for 30 min, 5-8th wk: 18 m/min for 40 min, 5 times/week). The result of this study showed that exercise and Pueraria and Rehmannia glutinosa intake suppressed weight gain. Furthermore, exercise and Pueraria and Rehmannia glutinosa intake increased muscle mass. This study observed H3K9 acetylation and demethylation in plantaris muscle in exercised group, but no difference in soleus muscle. To test whether the decrease in HDAC4, HDAC5 and G9a mRNA levels after exercise and Pueraria/Rehmannia glutinosa intake, HDAC4, HDAC5 and G9a mRNA levels were determined by real-time PCR. Only exercise induced HDAC5 and G9a mRNA reduction in plantaris muscle, but not in soleus muscle. In conclusion, these data demonstrates that exercise and Pueraria/Rehmannia glutinosa intake effect on body compositions. These changes are regulated by epigenetic modifications, such as histone acetylation and methylation. Future studies should focus on gene-specific epigenetics and other epigenetic mechanism for Pueraria/Rehmannia glutinosa intake.