• 제목/요약/키워드: N-bromosuccinimide

검색결과 54건 처리시간 0.023초

Bacillus subtilis 유래 Glycerol-3-phosphate Cytidylyltransferase의 화학적 수식

  • 박영서
    • 한국미생물·생명공학회지
    • /
    • 제25권2호
    • /
    • pp.173-177
    • /
    • 1997
  • Glycerol-3-phosphate cytidylyltransferase from Bacillus subtilis was modified with various chemical modifiers to determine the active sites of the enzyme. Treatment of the enzyme with group-specific reagents diethylpyrocarbonate, N-bromosuccinimide, or carbodiimide resulted in complete loss of enzyme activity, which shows histidine, tryptophan, and glutamic acid or aspartic acid residues are at or near the active site. In each case, inactivation followed pseudo first-order kinetics. Inclusion of glycerol-3-phosphate and/or CTP prevented the inactivation, indicating the presence of tryptophan and glutamic acid or aspartic acid residues at the substrate binding site. Analysis of kinetics of inactivation showed that the loss of enzyme activity was due to modification of a two histidine residues, single tryptophan residue, and two glutamic acid or aspartic acid residues.

  • PDF

Purification and Characterization of Guar Galactomannan Degrading $\alpha$-Galactosidase from Aspergillus oryzae DR-5

    • Journal of Microbiology and Biotechnology
    • /
    • 제14권4호
    • /
    • pp.863-867
    • /
    • 2004
  • $\alpha$-Galactosidase from A. oryzae DR-5 was induced in the presence of melibiose, raffinose, galactose, and locust bean galactomannan. The enzyme was purified to homogeneity by precipitation with acetone followed by ion-exchange chromatography using DEAE-Sephacel. The purified enzyme showed a single band in both nondenaturing-PAGE and SDS-PAGE. The enzyme was a glycoprotein in nature by activity staining. The molecular weight of the purified enzyme was 93-95 kDa by SDS-PAGE. The enzyme exhibited the optimum pH and temperature at 4.7 and $60^\circ{C}$, respectively. $\alpha$-Galactosidase activity was strongly inhibited by $Ag^{2+}, Hg^{2+}, Cu^{2+}$, and galactose. EDTA, 1,10-phenanthraline, and PMSF did not inhibit the enzyme activity, whereas N-bromosuccinimide completely inhibited enzyme activity. Investigation by TLC showed complete hydrolysis of stachyose and raffinose in soymilk in 3 h at pH 5.0 and $50^\circ{C}$.

곰팡이가 생산하는 세포외 $\beta$-Xylosidase의 정제 및 특성 (Purification and Characterization of Extracellular $\beta$-Xylosidase from Fungi)

  • 고명선;이상준;이종근
    • 한국미생물·생명공학회지
    • /
    • 제22권6호
    • /
    • pp.627-635
    • /
    • 1994
  • The $\beta$-xylosidase from Penicillium sp. FX-102 was purified by 40~80% ammonium sulfate saturation, CM-Cellulose column chromatography, Sephadex G-200 gel filtration, and isoelec- tric focusing. The optimum pH and temperature for the activity of the $\beta$-xylosidase was pH 4.5 and 50$\circ$C, respectively. The enzyme was stable at the pH range of 4.5~5.5, and at 55$\circ$C for 10 min. The molecular weight of the enzyme was estimated to be about 300,000 daltons by Sephadex G-200 gel filtration and 310,000 daltons of monomer by SDS polyacrylamide gel electrophoresis. Isoelectric point of the enzyme was determined to be pH 4.4. The enzyme activity was strongly inhibited by Hg$^{2+}$, Ag$^{2+}$, n-bromosuccinimide and p-chloromercuribenzoate. Xylobiose (10 mM) was completely decomposed to xylose after 8 hrs enzyme reaction with 2 units of the $\beta$-xylosidase.

  • PDF

Purification and Characterization of Xylanase from Bacillus sp. Strain DSNC 101

  • Cho, Nam-Chul;Bai, Suk
    • Journal of Microbiology and Biotechnology
    • /
    • 제7권6호
    • /
    • pp.386-390
    • /
    • 1997
  • A xylanase from the Bacillus sp. strain DSNC 101, isolated from soil, was purified to homogeneity by anion-exchange and hydrophobic interaction chromatography followed by gel filtration chromatography. The enzyme cleaved xylan, but not carboxymethyl cellulose, Avicel, soluble starch, and pNPX. The main product of oat spelts xylan hydrolysates was xylobiose. The xylanase had a molecular weight of 25 kDa determined by sodium dodecyl sulfate-polyacrylamide gel electrophoresis. Optimum temperature and pH for the xylanase activity were $50^{\circ}C$ and 6.0, respectively. $K_{m}\;and\;V_{max}$ of the enzyme for oat spelts xylan were 12.5 mg of xylan/ml and 869.5 unit/mg of protein, respectively. Xylanase was completely inhibited by Hg, Cu, and N-bromosuccinimide, but was stimulated by Ca, Co, and Mg.

  • PDF

Preparation of Branched Polystyrene Using Atom Transfer Radical Polymerization Techniques and Protection-Deprotection Chemistry

  • Kwark, Young-Je
    • Macromolecular Research
    • /
    • 제16권3호
    • /
    • pp.238-246
    • /
    • 2008
  • A new strategy using protection-deprotection chemistry was used to prepare branched polymers using the ATRP method only. Among the several monomers with different protecting groups, vinyl benzyl t-butyloxy carbonate (VBt-BOC) and 4-methyl styrene (4-MeSt) could be polymerized successfully to form backbones using the ATRP method in a controlled fashion. The protected groups in the backbones were converted to alkyl bromides and used as initiating sites for branch formation. The benzyl t-butyloxy carbonate groups in the backbones containing VBt-BOC units were first deprotected to benzyl alcohol by trifluoroacetic acid, then converted to benzyl bromide by reacting them with triphenylphosphine/carbon tetrabromide. The benzyl bromide groups in the backbones containing 4-MeSt units could be generated by bromination of the methyl groups using N-bromosuccinimide/benzoyl peroxide. The structures of the prepared polymers were well-controlled, as evidenced by the controlled molecular weight as well as the narrow and unimodal molecular weight distribution.

시종 누룩사상균, Aspergillus coreanus NR 15-1의 a-Amylase의 효소학적 특성 (Characteristics of a-Amylase of, a New Species, Aspergillus coreanus NR 15-1)

  • 이상훈;정혁준;여수환;김현수;유대식
    • KSBB Journal
    • /
    • 제19권4호
    • /
    • pp.301-307
    • /
    • 2004
  • 한국 전통누룩으로부터 분리한 신종 Aspergillus coreanus NR 15-1가 생산하는 a-amylase의 효소학적 특성을 조사했다. 공시균주가 생산하는 a-amylase는 황산암모늄을 이용한 분별 침전, CM-cellulose, DEAE-cellulose, Sephadex G-100, hydroxyapatite column chromatography를 통하여 8.7%의 수율을 보이며, 78배로 정제되었다. 공시균주의 a-amylase의 분자량은 Sephadex G-100 겔 여과에 의해 49 kDa으로 나타났으며, SDS-PAGE에 의하여 51 kDa으로 측정되어 본 효소는 monomer로 추정할 수 있었다. 정제효소는 pH 4.0∼11.0 사이에서 안정하였으며, 반응최적 pH는 5.0이었고, 5$0^{\circ}C$ 이하의 온도에서 비교적 안정하며, 반응최적온도는 45$^{\circ}C$로 나타났다. 정제효소는 금속이온에 의해 효소활성에 영향을 받지 않았으나, N-bromosuccinimide에 의해서는 효소활성이 완전히 저해되어 본 공시균주의 a-amylase의 활성부위에는 tryptophan 잔기가 관여한다고 추정할 수 있었다. 정제효소의 전분분해물은 maltose, maltotriose 등의 oligosaccharide를 형성하므로 a-amylase임을 확인할 수 있었다. 신종 누룩시상균인 Aspergillus coreanus NR 15-1의 a-amylase는 5$0^{\circ}C$ 이하의 온도와 pH 4.0∼11.0사이에서 안정하여 온도와 pH의 안정성이 우수하여 누룩제조용 사상균으로 사용이 가능함을 알 수 있었다.

화학적수식에 의한 Bacillus subtilis ED 213 Cytidine Deaminase의 활성부위에 관한 연구 (A study on the Active Site of Cytidine Deaminase from Bacillus subtilis ED 213 by Chemical Modification)

  • 박정문;박상원;서태수;김정;유대식
    • 미생물학회지
    • /
    • 제35권2호
    • /
    • pp.133-138
    • /
    • 1999
  • Bacillus subtilis ED 213의 cytidine deaminase 의 활성부위에 존재하는 필수 아미노산잔기를 화학수식 방법으로 측정하였다. 본 효소는 1mM o-phenanthroline 에 의하여 효소활성이 43% 저해되어 효소활성 발현에 Fe\sup 2+\가 요구된다고 추정되며, 1mM ethylenediaminetetraacetic acid 에 의해서는 효소활성이 오히려 28% 정도 촉진되었다. 본 효소는 1mM N-bromosuccinimide, 1mM chloramine-T 와 1mM $\rho$-chloromercuribenzoic acid에 의하여 100% 저해되었으며, 그의 저해 양상은 경쟁적 저해 양상을 나타내었다. 본 효소의 효소활성은 1mM pyridoxal-5-phosphate 에 의항 36% 저해되었으며, 1mM 1ethyl-3-carbodiamide 와 1mM glycine methylester에 의해 저해된 효소활성이 5mM cysteine에 의해 완전히 회복되었다. 이상의 결과로부터 Bacillus subtilis ED 213 cytidine deaminase의 활성부위에는 tyrosine, methionine, cysteine 과 serine 잔기가 관여할 뿐만 아니라 lysine 과 glycine 도 효소활성에 관여하는 것으로 추정된다.

  • PDF

재조합균주 E. coli CK1092가 생산하는 2,3-Dihydroxybiphenyl Dioxygenase의 정제 및 특성

  • 박효남;김영수;김영창;김치경;임재윤
    • 한국미생물·생명공학회지
    • /
    • 제24권3호
    • /
    • pp.282-289
    • /
    • 1996
  • 2,3-DHBP dioxygenase was purified from E. coli CK1092 carrying the pcbC gene, which was cloned from 4-chlorobiphenyl-degrading Pseudomonas sp. P20. Purification of this enzyme was done by acetone precipitation, DEAE- Sephadex A-25 ion exchange chromatography, and preparative gel electrophoresis. The molecular weight of subunit was 34 kDa determined by SDS-PAGE, and that of native enzyme was about 270 kDa. It suggests that this enzyme consist of eight identical subunits. This enzyme was specifically active against only 2,3-DHBP as a substrate with 18 $\mu$M of Km value, but not catechol, 3-methylcatechol, 4-methylcatechol and 4-chlorocatechol. The optimal pH and temperature of 2,3-DHBP dioxygenase were pH 8.0 and 40-60$\circ$C. The enzyme was inhibited by Cu$^{2+}$, Fe$^{2+}$ and Fe$^{3+}$ ions, and was inactivated by H$_{2}$0$_{2}$2 and EDTA. The lower concentrations of some organic solvents such as acetone and ethanol don't stabilize the activity of 2,3-DHBP dioxygenase. The enzyme was completely inactivated by adding the reagents such as N-bromosuccinimide, iodine and p- diazobenzene sulfonic acid.

  • PDF

Purification and characterization of a xylanase from alkalophilic cephalosporium sp. RYM-202

  • Kyu, Kang-Myoung;Kwon, Tae-Ik;Rhee, Yuung-Ha;Rhee, Young-Ha
    • Journal of Microbiology
    • /
    • 제33권2호
    • /
    • pp.109-114
    • /
    • 1995
  • Alkalophilic Cephalosporium sp. RYM-202 produced multiple xylanases extracellularly. One of these xylanases was purified to electrophoretical homogeneity by chromatography with DEAE-Sephadex A-50, Sephacryl S-200 HR and Superose 12 HR. The purified xylanase differed from most other microbial xylanases in that it had low-molecular weight and acidic isoelectric point. The molecular weight of the xylanase in that it had low-molecular weight and acidic isoelectric point. The molecular weight of the xylanase was 23 kDa by SDS-polyacrylamide electrophoresis and 24 kDa by gel permeation chromatography, and the isoelectric point was 4.3. The xylanase had the highest activity permentation chromatography, and the isoelectric point was 4.3. The xylanase had the highest activity permeation chromatography, and the isoelectric point was 4.3. The xylanase had the highest activity at pH 8.0 and 50 .deg.C. It was stable over a wide range of pH and retained more than 80% of its original activity after 24 h of incubation even at pH 12. The Km values of this enzyme on birchwood xylan and oat spelts xylan were 2.33 and 3.45 mg/ml, respectively. The complete inhibition of the enzyme of n-bromosuccinimide suggests the involvement of tryptophan in the active site. The sylanase lacked activity towards crystalline cellulose and carboxymethyl cellulose.

  • PDF

Purification, Characterization and Chemical Modification of the Xylanase from Alkali-tolerant Bacillus sp. YA-14

  • Park, Young-Seo;Yum, Do-Young;Hahm, Byoung-Kwon;Bai, Dong-Hoon;Yu, Ju-Hyun
    • Journal of Microbiology and Biotechnology
    • /
    • 제4권1호
    • /
    • pp.41-48
    • /
    • 1994
  • The xylanase from alkali-tolerant Bacillus sp. YA-14 was purified to homogeneity by CM-cellulose, Sephadex G-50, and hydroxyapatite column chromatographies. The molecular weight of the purified enzyme was estimated to be 20, 000 Da by sodium dodecyl sulfate-polyacrylamide gel electrophoresis. The purified enzyme slightly hydrolyzed carboxymethyl cellulose and Avicel, but did not hydrolyze soluble starch, dextran, pullulan, and ${\rho}-nitrophenyl-{\beta}$-D-xylopyranoside. The maximum degree of hydrolysis by enzyme for birchwood xylan and oat spelts xylan were 47 and 40%, respectively. The Michaelis constants for birchwood xylan and oat spelts xylan were calculated to be 3.03 mg/ml and 5.0 mg/ml, respectively. The activity of the xylanase was inhibited reversibly by $HgCl_2$, and showed competitive inhibition by N-bromosuccinimide, which probably indicates the involvement of tryptophan residue in the active center of the enzyme. The Xylanase was identified to be xylose-producing endo-type xylanase and did not show the enzymatic activities which cleave the branch point of the xylan structure.

  • PDF