• Title/Summary/Keyword: N-body simulation

Search Result 124, Processing Time 0.027 seconds

UNDER-DENSITY REGIONS AND THE PRIMORDIAL DENSITY FIELD

  • KIM MINSUN;PARK CHANGBOM
    • Journal of The Korean Astronomical Society
    • /
    • v.31 no.2
    • /
    • pp.109-115
    • /
    • 1998
  • We show that the low density regions of the matter distribution preserve the properties of the primordial density field better than the high density regions. We have performed a cosmological N-body simulation of large-scale structure formation in the standard CDM cosmology, and studied the evolution of statistics of under-density and over-density regions separately. The rank-order of the under-density regions is closer to the original one compared to that of the over-density regions. The under-density peaks (or voids) has moved less than over-density peaks (or dense clusters of galaxies) from their initial positions. Therefore, the under-density regions are more useful than the over-density regions in the study of the statistical property of the primordial density field.

  • PDF

Vibration Characteristic Analysis by Mode Variation of Ring Type Ultrasonic (링형 초음파모터의 진동모드 변화에 따른 진동특성 해석)

  • Yoon, S.Y.;Baek, S.H.;Kim, Y.;Kim, I.N.;Kim, C.J.;Kim, S.S.
    • Proceedings of the KIEE Conference
    • /
    • 2003.07b
    • /
    • pp.729-731
    • /
    • 2003
  • This Paper describes for vibration characteristic analysis by mode variation of ring type ultrasonic motor. Design for piezoelectric ceramic and elastic body of stator was calculated by Atila using the finite element method(FEM) that considers the resonance frequency, vibration mode and coupling efficiency etc. The propriety of this paper was established through simulation and experiment results of ring type ultrasonic motor.

  • PDF

Particle Tagging Method to Study the Formation and Evolution of Globular Clusters in Galaxy Clusters

  • Park, So-Myoung;Shin, Jihye;Smith, Rory;Chun, Kyungwon
    • The Bulletin of The Korean Astronomical Society
    • /
    • v.46 no.1
    • /
    • pp.29.3-29.3
    • /
    • 2021
  • Globular clusters (GCs) form at the very early stage of galaxy formation, and thus can be used as an important clue indicating the environment of the galaxy formation era. Although various GC formation scenarios have been suggested, they have not been examined in the cosmological context. Here we introduce the 'particle tagging method' in order to investigate the formation scenarios of GCs in a galaxy cluster. This method is able to trace the evolution of GCs that form in the dark matter halos which undergo the hierarchical merging events in galaxy cluster environments with an effective computational time. For this we use dark matter merger trees from the cosmological N-body simulation. Finally, we would like to find out the best GC formation scenario which can explain the observational properties of GCs in galaxy clusters.

  • PDF

Environmental Fate Tracking of Manure-borne NH3-N in Paddy Field Based on a Fugacity Model (Fugacity 모델에 기초한 논토양에서의 액비살포에 따른 암모니아성 질소 거동추적)

  • Kim, Mi-Sug;Kwak, Dong-Heui
    • Journal of Korean Society on Water Environment
    • /
    • v.35 no.3
    • /
    • pp.224-233
    • /
    • 2019
  • Nitrogen components in liquid manure can reduce safety and quality of environment harmfully. To minimize the environmental risks of manure, understanding fate of manure in environment is necessary. This study aimed at investigating applicability of a simplified Level III fugacity model for simulating $NH_3-N$ component to analyze environmental fate and transport of $NH_3-N$ in liquid manure and to provide basis for improving management of N in the liquid manure system and for minimizing the environmental impacts of N. The model simulation conducted for four environmental compartments (air, water, soil, and rice plants) during rice-cropping to trace $NH_3-N$ component and provided applicability of the Level III fugacity model in studying the environmental fate of $NH_3-N$ in manure. Most of $NH_3-N$ was found in water body and in rice plants depending upon the physicochemical properties and proper removal processes. For more precise model results, the model is needed to modify with the detailed removal processes in each compartment and to collect proper and accurate information for input parameters. Further study should be about simulations of various N-typed fertilizers to compare with the liquid manure based on a modified and relatively simplified Level III fugacity model.

FORMATION AND EVOLUTION OF SELF-INTERACTING DARK MATTER HALOS

  • AHN KYUNGJIN;SHAPIRO PAUL R.
    • Journal of The Korean Astronomical Society
    • /
    • v.36 no.3
    • /
    • pp.89-95
    • /
    • 2003
  • Observations of dark matter dominated dwarf and low surface brightness disk galaxies favor density profiles with a flat-density core, while cold dark matter (CDM) N-body simulations form halos with central cusps, instead. This apparent discrepancy has motivated a re-examination of the microscopic nature of the dark matter in order to explain the observed halo profiles, including the suggestion that CDM has a non-gravitational self-interaction. We study the formation and evolution of self-interacting dark matter (SIDM) halos. We find analytical, fully cosmological similarity solutions for their dynamics, which take proper account of the collisional interaction of SIDM particles, based on a fluid approximation derived from the Boltzmann equation. The SIDM particles scatter each other elastically, which results in an effective thermal conductivity that heats the halo core and flattens its density profile. These similarity solutions are relevant to galactic and cluster halo formation in the CDM model. We assume that the local density maximum which serves as the progenitor of the halo has an initial mass profile ${\delta}M / M {\propto} M^{-{\epsilon}$, as in the familiar secondary infall model. If $\epsilon$ = 1/6, SIDM halos will evolve self-similarly, with a cold, supersonic infall which is terminated by a strong accretion shock. Different solutions arise for different values of the dimensionless collisionality parameter, $Q {\equiv}{\sigma}p_br_s$, where $\sigma$ is the SIDM particle scattering cross section per unit mass, $p_b$ is the cosmic mean density, and $r_s$ is the shock radius. For all these solutions, a flat-density, isothermal core is present which grows in size as a fixed fraction of $r_s$. We find two different regimes for these solutions: 1) for $Q < Q_{th}({\simeq} 7.35{\times} 10^{-4}$), the core density decreases and core size increases as Q increases; 2) for $Q > Q_{th}$, the core density increases and core size decreases as Q increases. Our similarity solutions are in good agreement with previous results of N-body simulation of SIDM halos, which correspond to the low-Q regime, for which SIDM halo profiles match the observed galactic rotation curves if $Q {\~} [8.4 {\times}10^{-4} - 4.9 {\times} 10^{-2}]Q_{th}$, or ${\sigma}{\~} [0.56 - 5.6] cm^2g{-1}$. These similarity solutions also show that, as $Q {\to}{\infty}$, the central density acquires a singular profile, in agreement with some earlier simulation results which approximated the effects of SIDM collisionality by considering an ordinary fluid without conductivity, i.e. the limit of mean free path ${\lambda}_{mfp}{\to} 0$. The intermediate regime where $Q {\~} [18.6 - 231]Q_{th}$ or ${\sigma}{\~} [1.2{\times}10^4 - 2.7{\times}10^4] cm^2g{-1}$, for which we find flat-density cores comparable to those of the low-Q solutions preferred to make SIDM halos match halo observations, has not previously been identified. Further study of this regime is warranted.

HORIZON RUN 4 SIMULATION: COUPLED EVOLUTION OF GALAXIES AND LARGE-SCALE STRUCTURES OF THE UNIVERSE

  • KIM, JUHAN;PARK, CHANGBOM;L'HUILLIER, BENJAMIN;HONG, SUNGWOOK E.
    • Journal of The Korean Astronomical Society
    • /
    • v.48 no.4
    • /
    • pp.213-228
    • /
    • 2015
  • The Horizon Run 4 is a cosmological N-body simulation designed for the study of coupled evolution between galaxies and large-scale structures of the Universe, and for the test of galaxy formation models. Using 63003 gravitating particles in a cubic box of Lbox = 3150 h−1Mpc, we build a dense forest of halo merger trees to trace the halo merger history with a halo mass resolution scale down to Ms = 2.7 × 1011h−1M. We build a set of particle and halo data, which can serve as testbeds for comparison of cosmological models and gravitational theories with observations. We find that the FoF halo mass function shows a substantial deviation from the universal form with tangible redshift evolution of amplitude and shape. At higher redshifts, the amplitude of the mass function is lower, and the functional form is shifted toward larger values of ln(1/σ). We also find that the baryonic acoustic oscillation feature in the two-point correlation function of mock galaxies becomes broader with a peak position moving to smaller scales and the peak amplitude decreasing for increasing directional cosine μ compared to the linear predictions. From the halo merger trees built from halo data at 75 redshifts, we measure the half-mass epoch of halos and find that less massive halos tend to reach half of their current mass at higher redshifts. Simulation outputs including snapshot data, past lightcone space data, and halo merger data are available at http://sdss.kias.re.kr/astro/Horizon-Run4.

Stability Evaluation of Bump Crossing and Loading of Proto-type Mini-Forwarder by Computer Simulation (컴퓨터 시뮬레이션을 이용한 소형 임내차 시작기의 장애물 통과 및 적재 안정성 평가)

  • Park H. K.;Kim K. U.;Shim S. B.;Kim J. W.;Park M. S.;Song T. Y.
    • Journal of Biosystems Engineering
    • /
    • v.30 no.6 s.113
    • /
    • pp.366-372
    • /
    • 2005
  • The objective of this study was to evaluate the bump crossing and loading stability of a proto-type mini-forwarder under development. The evaluation was performed by computer simulation using a multi-body dynamic analysis program, Recur- Dyn 5.21. The proto-type was modeled and its properties such as mass, mass center, and mass moment of inertia were determined using 3D CAD modeler, Solid Edge 8.0. The $\%$ errors of masses, mass center, mass moment of inertia, and vertical motion of the model were within less than $10\%$ and the model's behavior agreed relatively well with those of the proto-type when traversing over a rectangular bump. Using the validated model, bump crossing of the proto-type was simulated and the loading limit was determined. It was found that effects of the shapes of bump on the bump crossing performance was insignificant within the practical heights of bumps. Stability of bump crossing increased with loading. However, loading of longer logs than 2.7 m made the crossing unstable because the ends of logs contacted ground when traversing over the bump. The maximum loading capacity of the proto-type was estimated to be 7.8 kN of 2.7 m long logs.

A Sub-1V Nanopower CMOS Only Bandgap Voltage Reference (CMOS 소자로만 구성된 1V 이하 저전압 저전력 기준전압 발생기)

  • Park, Chang-Bum;Lim, Shin-Il
    • Journal of IKEEE
    • /
    • v.20 no.2
    • /
    • pp.192-195
    • /
    • 2016
  • In this paper, we present a nanopower CMOS bandgap voltage reference working in sub-threshold region without resisters and bipolar junction transistors (BJT). Complimentary to absolute temperature (CTAT) voltage generator was realized by using two n-MOSFET pair with body bias circuit to make a sufficient amount of CTAT voltage. Proportional to absolute temperature (PTAT) voltage was generated from differential amplifier by using different aspect ratio of input MOSFET pair. The proposed circuits eliminate the use of resisters and BJTs for the operation in a sub-1V low supply voltage and for small die area. The circuits are implemented in 0.18um standard CMOS process. The simulation results show that the proposed sub-BGR generates a reference voltage of 290mV, obtaining temperature coefficient of 92 ppm/$^{\circ}C$ in -20 to $120^{\circ}C$ temperature range. The circuits consume 15.7nW at 0.63V supply.

Analysis of Water Quality Characteristics Using Simulated Long-Term Runoff by HEC-HMS Model and EFDC Model (HEC-HMS 모형에 의한 장기유출량과 EFDC 모형을 이용한 호소 내 수질특성 분석)

  • Kim, Yon-Soo;Kim, Soo-Jun;Kim, Hung-Soo
    • Journal of Wetlands Research
    • /
    • v.13 no.3
    • /
    • pp.707-720
    • /
    • 2011
  • For the lake case, the detention phenomenon of water body occurs and stays for a long time. Especially, following the layer of water depth direction, the lake body and water quality problems are different from the water quality of river. So according to time, the stream and water quality can be simulated by the 3-Dimensional Model, which can divide water layer for reservoir or lake. The water quality simulation result will become more reliability. For this study, the 3-Dimension Model - EFDC was used to simulate water quality of Unam reservoir in the Sumjin Dam. The HEC-GeoHMS and HEC-HMS Rainfall - Runoff Model based on GIS were used to estimate long-term runoff, and input data was constructed to the observed water level, meteorological data, water temperature, T-N and T-P. In order to apply the EFDC model, water depth was divided into 3 layers and 5,634 grids were extracted. After constructing the grid net, the water quality change of Unam reservoir in time and space was simulated. Overall, long term runoff simulation reflected the actual observed runoff well, through the water quality simulation, according to the pollution factors, the behavior characteristics can be checked, and the simulated water quality can be properly reflected. The function of EFDC has been confirmed, which water quality can be properly simulated. In the near future, to establish countermeasures for Intake Facilities of Watershed and Management, this support which some basic tools can be applied is in expectation.

Study on Electrical Characteristics of Ideal Double-Gate Bulk FinFETs (이상적인 이중-게이트 벌크 FinFET의 전기적 특성고찰)

  • Choi, Byung-Kil;Han, Kyoung-Rok;Park, Ki-Heung;Kim, Young-Min;Lee, Jong-Ho
    • Journal of the Institute of Electronics Engineers of Korea SD
    • /
    • v.43 no.11 s.353
    • /
    • pp.1-7
    • /
    • 2006
  • 3-dimensional(3-D) simulations of ideal double-gate bulk FinFET were performed extensively and the electrical characteristics. were analyzed. In 3-D device simulation, we changed gate length($L_g$), height($H_g$), and channel doping concentration($N_b$) to see the behaviors of the threshold voltage($V_{th}$), DIBL(drain induced barrier lowering), and SS(subthreshold swing) with source/drain junction depth($X_{jSDE}$). When the $H_g$ is changed from 30 nm to 45nm, the variation gives a little change in $V_{th}$(less than 20 mV). The DIBL and SS were degraded rapidly as the $X_{jSDE}$ is deeper than $H_g$ at low fin body doping($1{\times}10^{16}cm^{-3}{\sim}1{\times}10^{17}cm^{-3}$). By adopting local doping at ${\sim}10nm$ under the $H_g$, the degradation could be suppressed significantly. The local doping also alleviated $V_{th}$ lowering by the shallower $X_{jSDE}\;than\;H_g$ at low fin body doping.