• Title/Summary/Keyword: N-acetyl cysteine

Search Result 152, Processing Time 0.03 seconds

Reactive oxygen species-dependent apoptosis induction by water extract of Citrus unshiu peel in MDA-MB-231 human breast carcinoma cells

  • Kim, Min Yeong;Choi, Eun Ok;HwangBo, Hyun;Kwon, Da He;Ahn, Kyu Im;Kim, Hong Jae;Ji, Seon Yeong;Hong, Su-Hyun;Jeong, Jin-Woo;Kim, Gi Young;Park, Cheol;Choi, Yung Hyun
    • Nutrition Research and Practice
    • /
    • v.12 no.2
    • /
    • pp.129-134
    • /
    • 2018
  • BACKGROUND/OBJECTIVES: Although several recent studies have reported the anti-cancer effects of extracts or components of Citrus unshiu peel, which has been used for various purposes in traditional medicine, the molecular mechanisms for their effects remain unclear. In the present study, the anti-cancer activity of a water-soluble extract of C. unshiu peel (WECU) in MDA-MB-231 human breast carcinoma cells at the level of apoptosis induction was investigated. MATERIALS/METHODS: Cytotoxicity was evaluated using the MTT assay. Apoptosis was detected using DAPI staining and flow cytometry analyses. Mitochondrial membrane potential, reactive oxygen species (ROS) assay, caspase activity and Western blotting were used to confirm the basis of apoptosis. RESULTS: The results indicated that WECU-induced apoptosis was related to the activation of caspase-8, and -9, representative initiator caspases of extrinsic and intrinsic apoptosis pathways, respectively, and caspase-3 accompanied by proteolytic degradation of poly(ADP-ribose) polymerase and down-regulation of the inhibitors of apoptosis protein family members. WECU also increased the pro-apoptotic BAX to anti-apoptotic BCL-2 ratio, loss of mitochondrial membrane potential and cytochrome c release from mitochondria to cytoplasm. Furthermore, WECU provoked the generation of ROS, but the reduction of cell viability and induction of apoptosis by WECU were prevented when ROS production was blocked by antioxidant N-acetyl cysteine. CONCLUSIONS: These results suggest that WECU suppressed proliferation of MDA-MB-231 cells by activating extrinsic and intrinsic apoptosis pathways in a ROS-dependent manner.

Arsenite Acutely Decreases Nitric Oxide Production via the ROS-Protein Phosphatase 1-Endothelial Nitric Oxide Synthase-Thr497 Signaling Cascade

  • Seo, Jungwon;Lee, Jee Young;Sung, Min-Sun;Byun, Catherine Jeonghae;Cho, Du-Hyong;Lee, Hyeon-Ju;Park, Jung-Hyun;Cho, Ho-Seong;Cho, Sung-Jin;Jo, Inho
    • Biomolecules & Therapeutics
    • /
    • v.22 no.6
    • /
    • pp.510-518
    • /
    • 2014
  • Chronic (>24 h) exposure of arsenite, an environmental toxicant, has shown the decreased nitric oxide (NO) production in endothelial cells (EC) by decreasing endothelial NO synthase (eNOS) expression and/or its phosphorylation at serine 1179 ($eNOS-Ser^{1179}$ in bovine sequence), which is associated with increased risk of vascular diseases. Here, we investigated the acute (<24 h) effect of arsenite on NO production using bovine aortic EC (BAEC). Arsenite acutely increased the phosphorylation of $eNOS-Thr^{497}$, but not of $eNOS-Ser^{116}$ or $eNOS-Ser^{1179}$, which was accompanied by decreased NO production. The level of eNOS expression was unaltered under this condition. Treatment with arsenite also induced reactive oxygen species (ROS) production, and pretreatment with a ROS scavenger N-acetyl-L-cysteine (NAC) completely reversed the observed effect of arsenite on $eNOS-Thr^{497}$ phosphorylation. Although protein kinase C (PKC) and protein phosphatase 1 (PP1) were reported to be involved in $eNOS-Thr^{497}$ phosphorylation, treatment with PKC inhibitor, Ro318425, and overexpression of various PKC isoforms did not affect the arsenite-stimulated $eNOS-Thr^{497}$ phosphorylation. In contrast, treatment with PP1 inhibitor, calyculin A, mimicked the observed effect of arsenite on $eNOS-Thr^{497}$ phosphorylation. Lastly, we found decreased cellular PP1 activity in arsenite-treated cells, which was reversed by NAC. Overall, our study demonstrates firstly that arsenite acutely decreases NO production at least in part by increasing $eNOS-Thr^{497}$ phosphorylation via ROS-PP1 signaling pathway, which provide the molecular mechanism underlying arsenite-induced increase in vascular disease.

Auranofin Enhances Sulforaphane-Mediated Apoptosis in Hepatocellular Carcinoma Hep3B Cells through Inactivation of the PI3K/Akt Signaling Pathway

  • Hwangbo, Hyun;Kim, So Young;Lee, Hyesook;Park, Shin-Hyung;Hong, Su Hyun;Park, Cheol;Kim, Gi-Young;Leem, Sun-Hee;Hyun, Jin Won;Cheong, Jaehun;Choi, Yung Hyun
    • Biomolecules & Therapeutics
    • /
    • v.28 no.5
    • /
    • pp.443-455
    • /
    • 2020
  • The thioredoxin (Trx) system plays critical roles in regulating intracellular redox levels and defending organisms against oxidative stress. Recent studies indicated that Trx reductase (TrxR) was overexpressed in various types of human cancer cells indicating that the Trx-TrxR system may be a potential target for anti-cancer drug development. This study investigated the synergistic effect of auranofin, a TrxR-specific inhibitor, on sulforaphane-mediated apoptotic cell death using Hep3B cells. The results showed that sulforaphane significantly enhanced auranofin-induced apoptosis by inhibiting TrxR activity and cell proliferation compared to either single treatment. The synergistic effect of sulforaphane and auranofin on apoptosis was evidenced by an increased annexin-V-positive cells and Sub-G1 cells. The induction of apoptosis by the combined treatment caused the loss of mitochondrial membrane potential (ΔΨm) and upregulation of Bax. In addition, the proteolytic activities of caspases (-3, -8, and -9) and the degradation of poly (ADP-ribose) polymerase, a substrate protein of activated caspase-3, were also higher in the combined treatment. Moreover, combined treatment induced excessive generation of reactive oxygen species (ROS). However, treatment with N-acetyl-L-cysteine, a ROS scavenger, reduced combined treatment-induced ROS production and apoptosis. Thereby, these results deduce that ROS played a pivotal role in apoptosis induced by auranofin and sulforaphane. Furthermore, apoptosis induced by auranofin and sulforaphane was significantly increased through inhibition of the phosphoinositide 3-kinase (PI3K)/Akt pathway. Taken together, the present study demonstrated that down-regulation of TrxR activity contributed to the synergistic effect of auranofin and sulforaphane on apoptosis through ROS production and inhibition of PI3K/Akt signaling pathway.

Water Extract of Allium sativum L. Induces Apoptosis in Human Leukemia U937 Cells through Reactive Oxygen Species Generation (마늘 열수 추출물의 활성산소종 생성을 통한 인체백혈병세포의 apoptosis 유발)

  • Choi, Woo-Young;Chung, Kyung-Tae;Yoon, Tae-Kyung;Choi, Byung-Tae;Lee, Yong-Tae;Lee, Won-Ho;Ryu, Chung-Ho;Choi, Yung-Hyun
    • Journal of Life Science
    • /
    • v.17 no.12
    • /
    • pp.1709-1716
    • /
    • 2007
  • The health benefits of garlic (Allium sativum L.) are derived from a wide variety of components and from the different ways it is administered. The known health benefits of garlic include cardiovascular protective effects, stimulation of immune function, reduction of blood glucose level, protection against microbial, viral and fungal infections, as well as anticancer effects. In the present study, it was examined the effects of water extract of A. sativum (WEAS) on the growth of cultured human tumor cells in order to investigate its anti-proliferative mechanism. Treatment of WEAS to tumor cells resulted in the growth inhibition, especially in leukemia cells, which was associated with induction of G2/M arrest of the cell cycle and apoptosis. In order to further explore the critical events leading to apoptosis in WEAS-treated U937 human leukemia cells, the following effects of WEAS on components of the mitochondrial apoptotic pathway were examined: generation of reactive oxygen species (ROS), alteration of the mitochondrial membrane potential (MMP), and the expression changes of Bcl-2 and IAP family proteins. The cytotoxic effect of WEAS was mediated by its induction of apoptosis as characterized by the occurrence of DNA ladders, apoptotic bodies and chromosome condensation in U937 cells. The WEAS-induced apoptosis in U937 cells was correlated with the generation of intracellular ROS, collapse of MMP, activation of caspase-3 and down-regulation of anti-apoptotic proteins. The quenching of ROS generation with antioxidant N-acetyl-L-cysteine conferred significant protection against WEAS-elicited ROS generation, caspase-3 activation, G2/M arrest and apoptosis. In conclusion, the present study reveals that the cellular ROS generation plays a pivotal role in the initiation of WEAS-triggered apoptotic death in U937 cells.

Induction of apoptotic cell death in human bladder cancer cells by ethanol extract of Zanthoxylum schinifolium leaf, through ROS-dependent inactivation of the PI3K/Akt signaling pathway

  • Park, Cheol;Choi, Eun Ok;Hwangbo, Hyun;Lee, Hyesook;Jeong, Jin-Woo;Han, Min Ho;Moon, Sung-Kwon;Yun, Seok Joong;Kim, Wun-Jae;Kim, Gi-Young;Hwang, Hye-Jin;Choi, Yung Hyun
    • Nutrition Research and Practice
    • /
    • v.16 no.3
    • /
    • pp.330-343
    • /
    • 2022
  • BACKGROUND/OBJECTIVES: Zanthoxylum schinifolium is traditionally used as a spice for cooking in East Asian countries. This study was undertaken to evaluate the anti-proliferative potential of ethanol extracts of Z. schinifolium leaves (EEZS) against human bladder cancer T24 cells. MATERIALS/METHODS: Subsequent to measuring the cytotoxicity of EEZS, the anti-cancer activity was measured by assessing apoptosis induction, reactive oxygen species (ROS) generation, and mitochondrial membrane potential (MMP). In addition, we determined the underlying mechanism of EEZS-induced apoptosis through various assays, including Western blot analysis. RESULTS: EEZS treatment concentration-dependently inhibited T24 cell survival, which is associated with apoptosis induction. Exposure to EEZS induced the expression of Fas and Fas-ligand, activated caspases, and subsequently resulted to cleavage of poly (ADP-ribose) polymerase. EEZS also enhanced the expression of cytochrome c in the cytoplasm by suppressing MMP, following increase in the ratio of Bax:Bcl-2 expression and truncation of Bid. However, EEZS-mediated growth inhibition and apoptosis were significantly diminished by a pan-caspase inhibitor. Moreover, EEZS inhibited activation of the phosphoinositide 3-kinase (PI3K)/Akt pathway, and the apoptosis-inducing potential of EEZS was promoted in the presence of PI3K/Akt inhibitor. In addition, EEZS enhanced the production of ROS, whereas N-acetyl cysteine (NAC), a ROS scavenger, markedly suppressed growth inhibition and inactivation of the PI3K/Akt signaling pathway induced by EEZS. Furthermore, NAC significantly attenuated the EEZS-induced apoptosis and reduction of cell viability. CONCLUSIONS: Taken together, our results indicate that exposure to EEZS exhibits anti-cancer activity in T24 bladder cancer cells through ROS-dependent induction of apoptosis and inactivation of the PI3K/Akt signaling pathway.

A systematic exploration of ginsenoside Rg5 reveals anti-inflammatory functions in airway mucosa cells

  • Hyojin Heo;Yumin Kim;Byungsun Cha;Sofia Brito;Haneul Kim;Hyunjin Kim;Bassiratou M. Fatombi;So Young Jung;So Min Lee;Lei Lei;Sang Hun Lee;Geon-woo Park;Byeong-Mun Kwak;Bum-Ho Bin;Ji-Hwan Park;Mi-Gi Lee
    • Journal of Ginseng Research
    • /
    • v.47 no.1
    • /
    • pp.97-105
    • /
    • 2023
  • Background: Hyperactivated airway mucosa cells overproduce mucin and cause severe breathing complications. Here, we aimed to identify the effects of saponins derived from Panax ginseng on inflammation and mucin overproduction. Methods: NCI-H292 cells were pre-incubated with 16 saponins derived from P. ginseng, and mucin overproduction was induced by treatment with phorbol 12-myristate 13-acetate (PMA). Mucin protein MUC5AC was quantified by enzyme-linked immunosorbent assay, and mRNA levels were analyzed using quantitative polymerase chain reaction (qPCR). Moreover, we performed a transcriptome analysis of PMA-treated NCI-H292 cells in the absence or presence of Rg5, and differential gene expression was confirmed using qPCR. Phosphorylation levels of signaling molecules, and the abundance of lipid droplets, were measured by western blotting, flow cytometry, and confocal microscopy. Results: Ginsenoside Rg5 effectively reduced MUC5AC secretion and decreased MUC5AC mRNA levels. A systematic functional network analysis revealed that Rg5 upregulated cholesterol and glycerolipid metabolism, resulting in the production of lipid droplets to clear reactive oxygen species (ROS), and modulated the mitogen-activated protein kinase and nuclear factor (NF)-kB signaling pathways to regulate inflammatory responses. Rg5 induced the accumulation of lipid droplets and decreased cellular ROS levels, and N-acetyl-ⳑ-cysteine, a ROS inhibitor, reduced MUC5AC secretion via Rg5. Furthermore, Rg5 hampered the phosphorylation of extracellular signal-regulated kinase and p38 proteins, affecting the NF-kB signaling pathway and pro-inflammatory responses. Conclusion: Rg5 alleviated inflammatory responses by reducing mucin secretion and promoting lipid droplet-mediated ROS clearance. Therefore, Rg5 may have potential as a therapeutic agent to alleviate respiratory disorders caused by hyperactivation of mucosa cells.

Exploration of an Area with High Concentrations of Particulate Matter and Biomonitoring Survey of Volatile Organic Compounds among the Residents (부산 내 미세먼지 고농도 지역 탐색 및 체내 휘발성유기화합물 바이오모니터링 조사)

  • Hyunji Ju;Seungho Lee;Jae-Hee Min;Yong-Sik Hwang;Young-Seoub Hong
    • Journal of Environmental Health Sciences
    • /
    • v.49 no.6
    • /
    • pp.344-352
    • /
    • 2023
  • Background: With its developed port and related industries, the concentration of fine dust is high in Busan compared to other cities in South Korea. Many studies have reported the health effects of fine dust, but there has been a lack of information regarding concentrations of volatile organic compounds among those who exposed to high levels of fine dust. Objectives: This study aimed to define an area with high concentrations of particulate matter and perform biomonitoring surveys among the residents of the area. Methods: Air quality data was collected and the mean level of each district in Busan was derived. We then defined the area with the highest concentrations of PM10 as a target site. Urine samples were collected from the 400 participants and analyzed for VOCs metabolites - trans,trans-Muconic Acid (t,t-MA) and N-AcetylS-(benzyl)-L-cysteine (BMA). Interviews were conducted by trained investigators to examine demographic information. The levels of t,t-MA and BMA were compared with representative South Korean population data (Korean National Environmental Health Survey). The association of the VOC metabolites and fine dust were analyzed by general linear regression analysis. Results: The mean of PM10 in the target site was 42.50 ㎍/m3 from 2018 to 2020. Among the 400 participants in the target site, 74.8% were female and the average age of the participants was 66 years. The geometric mean of t,t-MA was 71.15 ㎍/g creatinine and the BMA was 7.00 ㎍/g creatinine among the residents. The levels were higher than the geometric mean from the 4th KoNEHS. The levels of t,t-MA showed significance in BMI, smoking status, and household income. BMA showed significance in gender and age. Conclusions: Compared to the general population of South Korea, the target site's residents had higher biomonitoring levels. Based on this study, continuous screening for high risk areas, including the target site, and biomonitoring of the residents are required.

EFFECT OF CURCUMIN AND RESVERATROL ON THE CELL CYCLE REGULATION, APOPTOSIS AND INHIBITION OF METASTASIS RELATED PROTEINS IN HN-4 CELLS (Curcumin과 resveratrol에 의한 두경부암 유래의 HN-4 세포의 세포주기, 세포사 및 전이관련 단백질의 발현 조절)

  • Kim, Sa-Yub;Lee, Sang-Han;Kwon, Taeg-Kyu
    • Journal of the Korean Association of Oral and Maxillofacial Surgeons
    • /
    • v.29 no.5
    • /
    • pp.272-281
    • /
    • 2003
  • Nontraditional or alternative medicine is becoming an increasingly attractive approach for the treatment of various inflammatory disorders and cancers. Curcumin is the major constitute of turmoric powder extracted from the rhizomes of the plant Curcuma longa. Resveratrol is a phytoalexin present in grapes and a variety of medicinal plants. In this report, We investigated the effect of curcumin and resveratrol on regulatory protein of cell cycle, induction of apoptosis and MMP activity. Treatment with 75 M curcumin for 24 hrs produced morphological changing in HN-4 cells. Curcumin and resveratrol inhibited the cellular growth in HN-4 cells. Inhibition of cell growth was associated with down-regulation of cell cycle regulatory proteins. Curcumin-induced caspase-3 activation and Bax degradation were dose-dependent with a maximal effect at a concentration of 100 M. The elevated caspase-3 activity in curcumin treated HN-4 cells are correlated with down-regulation of survivin and cIAP1, but not cIAP2. Curcumin induced a dose-dependent increase of cytochrome c in the cytosol. Curcumin induced-apoptosis was mediated through the release of cytochrome c. In addition, curcumin-induced apoptosis was caused by the generation of reactive oxygen species, which was prevented by antioxidant N-acetyl-cysteine (NAC). Cotreatment with NAC markedly prevented cytochrome c release, Bax cleavage and cell death. Also resveratrol-induced apoptosis was preceded by down-regulation of the anti-apoptotic Bcl-2, cIAP1, and caspase-3 activity. However, resveratrol-induced apoptosis was not prevented by antioxidant NAC. In addition, HN-4 cells release basal levels of MMP2 when cultured in serum-free medium. Treatment of the cells with various concentrations of PMA for 24 hr induced the expression and secretion of latent MMP9 as determined by gelatin zymography. HN-4 cells were treated with various concentrations of curcumin and resveratrol in the presence of 75 nM PMA, and MMP2 and 9 activities were inhibited by curcumin and resveratrol. These findings have implications for developing curcumin-based anticancer and anti-inflammation therapies.

Effect of Antioxidants Plus Growth Factors on In Vitro Development of Porcine IVM/IVF Embryos (항산화제와 Growth Factor 혼합첨가가 돼지 체외수정란의 체외배양에 미치는 영향)

  • 최영진;박춘근;정희태;김정익;박동헌;장현용;장원경;박진기;양부근
    • Korean Journal of Animal Reproduction
    • /
    • v.26 no.3
    • /
    • pp.215-221
    • /
    • 2002
  • Antioxidants(N-acetyl-1-cysteine, ebselen and glutathione) and growth factors(EGF, PDGF) were studied as a mean of increasing the development of porcine embryos produced by in vitro maturation (IVM) and in vitro fertilization(IVF). Porcine embryos developed to the 2~8 cell stage after IVF were cultured fer 6 to 7 days at 38.5$^{\circ}C$ in NCSU 23 medium containing antioxidants plus growth factors. Cell numbers of blastocysts were counted by fluorescence staining method. The developmental rate beyond morula stages in NCSU 23 containing NAC(1nm) or NAC(1nm) plus EGF(100ng/$m\ell$) or PDGF(5ng/$m\ell$) were 28.1, 32.3 and 35.3%, respectively. NAC plus PDGF group was slightly higher than control group(P>0.05). The developmental capacity in NCSU 23 containing ebselen(10 $\mu$M) or ebselen(10 $\mu$M) plus EGF(100ng/$m\ell$) or PDGF(5ng/$m\ell$) were 17.8, 36.9 and 40.3%, respectively Ebselen plus growth factor groups were significantly higher than control group(P<0.05). The developmental capacity in NCSU 23 containing glutathione(100 $\mu$M) or glutathione(100 $\mu$M) plus EGF (100ng/$m\ell$) or PDGF(5ng/$m\ell$) were 24.1, 30.5 and 27.7%, respectively. There were not difference in all experimental groups(P>0.05). In all experimental groups, there was no significantly differences on the cell number of blastocysts, but ebselen plus growth factor groups were significantly higher than control group. These studies indicate that antioxidants plus growth factors can increase the proportion of embryos that developed beyond morulae stage.

EFFECTS OF HYDROQUINONE ON NEOPLASTIC TRANSFORMATION OF HUMAN EPITHELIAL CELLS IN CULTURE (Hydroquinone이 인체 상피세포의 발암화에 미치는 영향)

  • Sohn, Jung-Hee;Kim, Chin-Soo
    • Maxillofacial Plastic and Reconstructive Surgery
    • /
    • v.32 no.3
    • /
    • pp.218-228
    • /
    • 2010
  • Components of dental resin-based restorative materials are reported to leach from the filling materials even after polymerization. Hydroquinone (HQ) is one of the major monomers used in the dental resin and is known as a carcinogen. Thus, carcinogenic risk of HQ leaching from the dental resin becomes a public health concern. The present study attempted to examine the carcinogenic potentials of HQ on the human epithelial cell, which is the target cell origin of the most of oral cancers. Cytotoxicity of HQ was observed above 50${\mu}M$ as measured by LDH assay, indicating a relatively low toxicity of this substance in human epithelial cells. The parameters of neoplastic cellular transformation such as cell saturation density, soft agar colony formation and cell aggregation were analyzed to examine the carcinogenic potential of HQ. The study showed that 2-week exposure of HQ showed the tendency of increase in the saturation density and the significant enhancement of soft agar colony formation at the highest dose, 50 ${\mu}M$ only. It is suggested that HQ has a weak potential of carcinogenicity. When cells were treated with HQ and TPA, a well-known tumor promoter, the parameters of neoplastic cellular transformation was significantly increased. This result indicates that the potential risk of carcinogenicity from HQ is largely dependent upon the presence of promoter. Exposure of 50 ${\mu}M$ HQ increased the time-dependent apoptosis as measured by the ELISA kit. This concentration coincides with a dose of neoplastic transformation, indicating a possible link between apoptosis and HQ-induced cellular transformation. Hydroquinone generated Reactive Oxygen Species (ROS) which was evidenced by the treatment of antioxidants such as trolox and N-acetyl cysteine and the GSH depleting agent, BSO. Antioxidants blocked the generation of ROS and the GSH depleting agent, BSO dramatically increased the ROS production. Since HQ is known to increase ROS production thru activation of transcriptional factor such as c-Myb and Pim-1, it is speculated that ROS generation by HQ plays a role in the activation of oncogene, which may lead to neoplastic transformation. In addition, ROS is involved in the alteration of signal transduction, which regulates the apoptosis in many cellular systems. Thus, ROS-mediated apoptosis may be involved in the HQ-induced carcinogenic processes. Protein kinase C (PKC) is known to play pivotal roles in neoplastic transformation of cells and its high expression is often found in a variety of types of tumors including oral cancer. PKC translocation of PKC-${\alpha}$ was observed following HQ exposure. Altered signaling system may also play a role in the transformation process. Taken together, HQ leached from the dental resin does not pose a significant threat as a cancer causing agent, but its carcinogenic potential can be significantly elevated in the presence of promoter. The mechanism of HQ-induced carcinogenesis involved ROS generation, apoptosis and altered signaling pathway. The present study will provide a valuable data to estimate the potential risk of HQ as a carcinogen and understand mechanism of HQ-induced carcinogenesis in human epithelial cells.