• Title/Summary/Keyword: N-Nakagami fading channels

Search Result 8, Processing Time 0.019 seconds

Performance Analysis of IDF Relaying M2M Cooperative Networks over N-Nakagami Fading Channels

  • Xu, Lingwei;Zhang, Hao;Gulliver, T. Aaron
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.9 no.10
    • /
    • pp.3983-4001
    • /
    • 2015
  • Exact average bit error probability (BEP) expressions for mobile-relay-based mobile-to-mobile (M2M) cooperative networks with incremental decode-and-forward (IDF) relaying over N-Nakagami fading channels are derived in this paper. The average BEP performance under different conditions is evaluated numerically to confirm the accuracy of the analysis. Results are presented which show that the fading coefficient, the number of cascaded components, the relative geometrical gain, and the power allocation parameter have a significant influence on the average BEP performance.

MRC Performance Comparison between Rectangular QAM and M-PSK over Nakagami-n Fading Channels (나카가미-n 페이딩 채널에서 직사각 QAM과 M-PSK 신호의 최대비 합성 수신 성능 비교)

  • Lim, Jeong-Seok;Park, Sang-Kyu
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.30 no.8C
    • /
    • pp.754-761
    • /
    • 2005
  • We derive and analyze a bit error rate(BER) expression of a Gray coded rectangular QAM(R-QAM) signal with maximal ratio combining diversity(MRC) reception over Nakagami-n(Rician) fading channels. The derived result is provided in terms of the Whittaker function and the confluent hypergeometric function. In addition, by performance comparison with M-PSK, we see the Nakagami-n fading channel characteristics. Because the derived expression is general, it can readily allow numerical e·valuation for various cases of practical interest such as line-of-sight (LOS) or satellite communication channel analysis.

Performance Analysis of Arbitrary Rectangular QAM over Nakagami Fading Channels with MRC in the Presence of Co-channel Interference (동일 채널 간섭이 존재하는 나카가미 채널에서 임의 직사각 QAM 신호의 MRC 다이버시티 수신 성능)

  • 현광민;윤동원;박상규
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.29 no.3A
    • /
    • pp.257-265
    • /
    • 2004
  • General closed-form expression is derived and analyzed for the exact bit error rate (BER) performance of the arbitrary rectangular Gray coded QAM signal in conjunction with maximal-ratio combining (MRC) diversity on frequency non-selective slow m-distributed Nakagami fading channel in the presence of co-channel interference. Numerical results demonstrate error performance improvement with the use of MRC diversity reception. The new expressions presented here are suitable for evaluating various cases of practical interest on wireless communication channels.

Joint TAS and Power Allocation for IHDAF Relaying M2M Cooperative Networks

  • Xu, Lingwei;Zhang, Hao;Gulliver, T. Aaron
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.10 no.5
    • /
    • pp.1957-1975
    • /
    • 2016
  • The outage probability (OP) performance of multiple-relay-based incremental hybrid decode-amplify-forward (IHDAF) relaying mobile-to-mobile (M2M) networks with transmit antenna selection (TAS) over N-Nakagami fading channels is investigated in this paper. The closed-form expressions for approximate OP of the optimal and suboptimal TAS schemes are derived. The power allocation problem is formulated for performance optimization. Then the OP performance under different conditions is evaluated through numerical simulations to verify the analysis. The simulation results showed that optimal TAS scheme has a better OP performance than suboptimal TAS scheme; the power-allocation parameter has an important influence on the OP performance.

Analytical Approximation of Optimum Chip Waveform and Performance Evaluation in the DS-CDMA System (DS-CDMA 방식에서 최적 칩 파형의 해석적 근사화와 통신 성능 분석)

  • 이재은;정락규;유흥균
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.14 no.6
    • /
    • pp.567-574
    • /
    • 2003
  • It is important to design and evaluate the chip waveform with the minimum MAI under the bandwidth constraint in the interference-limited DS-CDMA system. In this paper, by approximation we present the analytical chip waveforms that are proposed and optimized in the reference. Their performances are compared with performances of three conventional chip waveforms: rectangular, half-sine and raised-cosine. Waveform 1 of the proposed chip waveform outperforms the conventional ones. BER and throughput performance are evaluated in the Rayleigh and Nakagami-m fading channels when DPSK modulation is used. When the required BER is 10$\^$-3/ in two fading channels, the capacity of the waveform 1 is improved about 20 % rather than raised-cosine one. When the offered traffic is 30 and the number of packet per bit(N$\sub$d/) is 14, maximum throughput of the waveform 1 is better than raised-cosine chip waveform about 18 % in two fading channels.

ABEP Performance of ISDF Relaying M2M Cooperative Networks

  • Xu, Lingwei;Wang, Jingjing;Wang, Han;Gulliver, T. Aaron
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.10 no.12
    • /
    • pp.5129-5148
    • /
    • 2016
  • In this paper, the average bit error probability (ABEP) performance of the incremental-selective decode-and-forward (ISDF) relaying mobile-to-mobile (M2M) cooperative networks over N-Nakagami fading channels is investigated. The exact ABEP expressions are derived, and the power allocation problem is formulated.The derived ABEP expressions are verified by Monte Carlo simulations. The simulation results showed that the propagation parameters, such as the fading coefficient, and the power-allocation parameter, have a significant influence on the ABEP performance.

Performance Analysis of Hybrid DS/FH-CDMA over Nakagami Fading Channels with Near-Far Problem (원근문제와 나카가미 페이딩을 고려한 하이브리드 DS/FH-CDMA 방식의 성능 분석)

  • 임태길;강희조
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.10 no.7
    • /
    • pp.1118-1130
    • /
    • 1999
  • In this paper, error performance of DS/FH CDMA system has been analyzed in a radio channel which is characterized by near-far problem and multi-path fading. The DS/FH CDMA system adopts Maximum Ratio Combining(MRC) diversity and BCH(Bose-Chau dhuri-Hocquenghem) coding techniques to enhance system performance. Using the derived error probability equation, the error performance of DS/FH CDMA system has been evaluated and shown in figures to discuss as a function of PN code length(N), hopping rate(q), number of diversity branch(M), coding rate($\gamma$) and bit energy per noise power ratio ${E_b/N_o}$. The results show that DS/FH system is more effective to restrain the affection of near-far problem and multi-path fading than DS system. And there is a substantial enhancement in performance by employing an MRC diversity or BCH coding techniques. Consequently, we expected that proposed system structure is reliable to the voice communication system in near-far problem and multi-path fading channel.

  • PDF

Adaptive Correlation Receiver for Frequency Hopping Multi-band Ultra-Wideband Communications (주파수 도약 멀티 밴드 초 광대역 통신을 위한 적응적 상관 수신기 방식)

  • Lee, Ye-Hoon;Choi, Myeong-Soo;Lee, Seong-Ro;Lee, Jin-Seok;Jung, Min-A
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.34 no.5A
    • /
    • pp.401-407
    • /
    • 2009
  • The multi-band (MB) ultra-wideband (UWB) communication system divides its available frequency spectrum in 3.1 to 10.6GHz into 16 sub-bands, which leads to inherent disparities between carrier frequencies of each sub-band. For instance, the highest carrier frequency is 2.65 times higher than the lowest one. Since the propagation loss is proportional to the square of the transmission frequency, the propagation loss on the sub-band having the highest carrier frequency is approximately 7 times larger than that on the sub-band having the lowest carrier frequency, which results in disparities between received signal powers on each sub-band. In this paper, we propose a novel correlation scheme for frequency hopping (FH) MB UWB communications, where the correlation time is adaptively adjusted relative to the sub-band, which reduces the disparity between the received signal energies on each sub-band. Such compensation for lower received powers on sub-bands having higher carrier frequency leads to an improvement on the total average bit error rate (BER) of the entire FH MB UWB communication system. We analyze the performance of the proposed correlation scheme in Nakagami fading channels, and it is shown that the performance gain provided by the proposed correlator is more significant as the Nakagami fading index n increases (i.e., better channel conditions).