• Title/Summary/Keyword: N-Halamine

Search Result 6, Processing Time 0.023 seconds

Properties of Antimicrobial Membrane Using an N-Halamine Material (N-Halamine을 이용한 항균 멤브레인의 특성)

  • Baek, Ji-Yoon;Kim, Sam-Soo;Lee, Jae-Woong
    • Textile Coloration and Finishing
    • /
    • v.21 no.4
    • /
    • pp.57-62
    • /
    • 2009
  • N-Halamines are compounds which have covalent bonding between nitrogen and halogen. N-Halamine materials possess strong antimicrobial properties against wide spectrum of bacteria. The aim of this study is to prepare N-halamine membranes using m-aramid and poly(vinyl alcohol) (PVA). Surface characteristics using scanning electron microscope (SEM), pore size distribution, liquid permeability and mean pore size were measured to confirm feasibility as membrane. The results indicated that increased PYA portion up to 15% in the m-aramid/PVA blend resulted in improved pore size distribution, liquid permeability as well as mean pore size. Furthermore, antibacterial efficacy of the membranes after chlorination was confirmed and the results showed that bacteria in water were inactivated.

Development of Antimicrobial N-halamine containing Alkyl Chain for Paint (알킬기를 함유한 N-halamine을 이용한 페인트용 항균제의 개발)

  • Choi, Kwonyong;Kim, Tae-young;Yun, Sang-woo;Yoon, Jeyong;Lee, Jong-Chan
    • Applied Chemistry for Engineering
    • /
    • v.22 no.1
    • /
    • pp.45-47
    • /
    • 2011
  • Novel antibacterial N-halamine materials with alkyl group were prepared for paint application. Using E. coli and Fungi, antibacterial property of the dichloro hexyl isocyanuric acid (DCHICA) was determined and influences of the antibacterial agent's concentration and the bacteria test time on the antibacterial ability were also investigated. It was also observed that the film made using DCHICA showed better surface biocidal activity against the bacteria and fungi than that of dichloroisocyanuric acid (DCICA) in the absence of alkyl chains.

Antimicrobial Agents and Applications on Polymeric Materials (고분자재료에 대한 항균성 물질과 적용)

  • Lee, Jae-Woong
    • Textile Coloration and Finishing
    • /
    • v.20 no.3
    • /
    • pp.39-56
    • /
    • 2008
  • A wide variety of materials including aldehydes, cationic agents, alcohols, peroxygens, phenols and chlorinated phenols, metal ions are being employed as biocides. Among three levels for biocidal functions (sanitization, disinfection and sterilization), disinfection is an enough level for antimicrobial textiles. In terms of antimicrobial agents for textile applications, quaternary ammonium salts (QAS), chitosan, metal and metal salts, N-halamine based materials are developed with numerous research and the positive ions of those materials may result in disinfection of microorganisms. Photocatalysts, especially titanium dioxide (titania) produces the hydroxyl radical (${\cdot}\;OH$) which causes inactivation of microorganisms after UV radiation, have been used for antimicrobial applications.

Improved Antimicrobial Efficacy of m-Aramid

  • Kim, Sam-Soo;Park, Jeong-Eun;Jung, Da-Un;Seo, Byeong-Joo;Huh, Man-Woo;Lee, Jae-Woong
    • Textile Coloration and Finishing
    • /
    • v.21 no.5
    • /
    • pp.58-62
    • /
    • 2009
  • Poly(m-phenyleneisophthalamide), m-aramid has no adjacent $\alpha$-hydrogen of a nitrogen-halogen bond causes dehydrohalogenation. This fact proposes that m-aramid is one of good antimicrobial precursors. To enhance the surface area of m-aramid, electrospinning was employed. Scanning electron microscopy(SEM) was conducted to inspect the morphology change of m-aramid. The surface area of regular and electrospun m-aramid was calculated. Swatch test was applied to measure antimicrobial activity of the samples. The results showed that within 10 min contact time the electrospun m-aramid inactivated Escherichia coli KCTC 1039 (Gram-negative bacteria) with 8 log reductions.

Electro-spun Antimicrobial Acrylic Fiber

  • Lee, Jae-Woong;Ren, Xue-Hong;Broughton, R.M.;Liang, Jie;Worley, S.D.;Huang, T.S.
    • Textile Coloration and Finishing
    • /
    • v.19 no.2
    • /
    • pp.44-49
    • /
    • 2007
  • Antimicrobial fibers were prepared by an electro-spinning method. Polystyrene hydantoin(PSH) was employed as an antimicrobial precursor to produce an electro-spun antimicrobial acrylic fiber. Increasing the surface area of hydrophobic antimicrobial-fibers provides enhanced antimicrobial efficacy. The biocidal activity of electro-spun acrylic fibers could be rendered through chlorine bleach treatment, and the antimicrobial effectiveness against gram-Positive and gram-negative bacteria was investigated. In addition, scanning electron microscopy(SEM) demonstrated the feature of the electro-spun fibers.