• Title/Summary/Keyword: N-Debenzylation

Search Result 7, Processing Time 0.02 seconds

Oxidative N-Debenzylation of N-Benzyl-N-substituted Benzylamines Catalyzed by Cytochrome P450

  • Kim, Sung-Soo;Lin, Gang;Yang, Ji-Won
    • Bulletin of the Korean Chemical Society
    • /
    • v.25 no.2
    • /
    • pp.249-252
    • /
    • 2004
  • Cytochrome P450 (P450)/$O_2$/NADPH engender electron transfer reaction of N-benzyl-N-substituted benzylamines to yield corresponding radical cation 1 that is simultaneously converted into 2 and 3. Subsequently, expulsion of proton and hydroxylation yielding a-hydroxylamines are followed by formation of benzaldehydes and benzylamines.

Syntheses and Phase-transfer Catalytic Activities of Monoazacrown Ethers

  • Shim Jae Hu;Chung Kwang Bo;Masao Tomoi
    • Bulletin of the Korean Chemical Society
    • /
    • v.13 no.3
    • /
    • pp.252-255
    • /
    • 1992
  • Preparative methods for and catalytic activities of monoaza-18-crown-6 or monoaza-15-crown-5 in the reaction of 1-bromooctane with aqueous KI or NaI were investigated. Monoazacrown ethers were prepared by debenzylation of N-benzylmonoazacrown ethers, obtained from the reaction of N-benzyldiethanolamine and oligoethylene glycol ditosylate. The phase-transfer catalytic activity of N-benzylmonoazacrown ethers was higher than that of the corresponding monoazacrown ethers.

Synthesis of Dendritic Polystyrene-block-Linear Poly(t-butyl acrylate) Copolymers by an Amide Coupling (아미드 커플링을 통한 덴드리틱 Polystyrene-Block-Linear Poly(t-butyl acrylate) 공중합체의 합성)

  • Song, Jie;Cho, Byoung-Ki
    • Polymer(Korea)
    • /
    • v.33 no.2
    • /
    • pp.158-163
    • /
    • 2009
  • In this study, we synthesized a series of dendritic polystyrene-b-linear poly (t-butyl acrylate) copolymers with well-defined molecular architectures. The hydroxyl group located at the focal point of the second generation dendron bearing polystyrene ($M_n$ = 1000 g/mol) peripheries was converted into amine group via the following stepwise reactions: 1) tosylatoin, 2) azidation, and 3) reduction. On the other hand, the linear poly (t-butyl acrylate)s were prepared by an atom transfer radical polymerization (ATRP) of t-butyl acrylate where benzyl 2-bromopropanoate and Cu(I)Br/PMDETA were used as initiator and catalyst, respectively. To convert the end group of prepared poly (t-butyl acrylate) s into carboxylic acid, a debenzylation was performed using Pd/C catalyst under $H_2$ atmosphere. In the final step, dendritic-linear block copolymers were obtained through a simple amide coupling reaction mediated by 4-(dimethylamino) pyridine(DMAP) and N,N'-diisopropylcarbodiimide(DIPC). The resulting diblock copolymers were shown to have well-defined molecular weights and narrow molecular weight distributions as supported by $^1H$-NMR spectroscopy and gel permeation chromatography(GPC).

Synthesis of GlcNAcp- β-(1→3)-Galp- α-(1→2)-6-deoxy-altroHepp- α-(1→O-propyl, an O-Antigenic Repeating Unit from C. jejuni O:23 and O:36

  • Yoon, Shin-Sook;Shin, Young-Sook;Chun, Keun-Ho;Nam Shin, Jeong E.
    • Bulletin of the Korean Chemical Society
    • /
    • v.25 no.2
    • /
    • pp.289-292
    • /
    • 2004
  • A trisaccharide, GlcNAcp- ${\beta}-(1{\to}3)-Galp-{\alpha}-(1{\to}2)$-6-deoxy-altroHepp- ${\alpha}-(1{\to}O$-propyl, as an O-antigenic repeating unit of C. jejuni serotype O:23 and O:36 was synthesized. Coupling of the GlcNPhth-(1${\to}$3)-Gal disaccharide donor with allyl 6-deoxy-altroHep acceptor in the presence of iodonium dicollidine perchlorate (IDCP) promoter afforded the ${\alpha}$-galactosidic trisaccharide with high stereoselectivities. Subsequent deacetalation, dephthaloylation, N-acetylation, and hydrogenolytic debenzylation furnished the title compound.

Efficient Cleavage of Alkyl Aryl Ethers Using an Ionic Liquid under Microwave Irradiation

  • Park, Se Kyung;Battsengel, Oyunsaikhan;Chae, Junghyun
    • Bulletin of the Korean Chemical Society
    • /
    • v.34 no.1
    • /
    • pp.174-178
    • /
    • 2013
  • A highly reliable dealkylation protocol of alkyl aryl ethers, whose alkyl groups are longer than methyl group, has been developed. We report that various ethyl, n-propyl, and benzyl aryl ethers are successfully cleaved using an ionic liquid, 1-n-butyl-3-methylimidazolium bromide, [bmim][Br], under microwave irradiation. Despite many characteristics such as lower cost and less toxicity of the alkylating agents, and greater hydrophobicity of the products, longer alkyl ethers have been significantly less exploited than methyl ethers, probably due to more difficulty in the deprotection step. Since it has the same advantages as the demethylation method developed by this group including mild conditions, short reaction time, and small use of the ionic liquids, the dealkylation protocol can greatly encourage the broader use of longer alkyl groups in the protection of phenolic groups. As with our previous study of demethylation using [bmim][Br], the microwave irradiation is crucial for the deprotection of longer alkyl aryl ethers. Unlike the conventional heating, which causes either low conversion or decomposition, the microwave irradiation seems to more effectively provide energy to cleave the ether bonds and therefore suppresses the undesired reactions.

Synthesis of the Polysaccharide, (1 $\longrightarrow$ 5)-$\alpha$-D-Ribofuranan and Its Catalytic Activities for the Hydrolysis of Phosphates and the Cleavage of Nucleic Acids

  • Han, Man-Jung;Yoo, Kyung-Soo;Kim, Young-Heui;Kim, Hong-Youb;Shin, Hyun-Joon;Chang, Ji-Young
    • Macromolecular Research
    • /
    • v.12 no.4
    • /
    • pp.359-366
    • /
    • 2004
  • The polysaccharide, (1\longrightarrow5)-$\alpha$-D-ribofuranan, was synthesized by a cationic ring-opening polymerization of 1,4-anhydro-2,3-di-O-benzyl-$\alpha$-D-ribopyranose with the aid of boron trifluoride etherate and subsequent debenzylation. This polysaccharide catalyzed the hydrolysis of ethyl p-nitrophenyl phosphate, uridylyl(3'\longrightarrow5')uridine ammonium salt, and 4-tert-butylcatechol cyclic phosphate N-methyl pyridinium. The polymer also catalyzed the cleavage of nucleic acids (DNA and RNA). The hydrolysis of ethyl p-nitrophenyl phosphate in the presence of the polymer was accelerated by 1.5 ${\times}$ 10$^3$ times relative to the uncatalyzed reaction. The catalytic activity was attributable to the vic-cis-diols of the riboses being located inside the active center that is formed by polymer chain folding; these diols form hydrogen bonds with two phosphoryl oxygen atoms of the phosphates so as to activate the phosphorus atoms to be attacked by nucleophile ($H_2O$).