• 제목/요약/키워드: N-(3-trifluoromethyl-phenyl)-retinamide

검색결과 1건 처리시간 0.014초

A Novel All-trans Retinoid Acid Derivative N-(3-trifluoromethyl-phenyl)-Retinamide Inhibits Lung Adenocarcinoma A549 Cell Migration through Down-regulating Expression of Myosin Light Chain Kinase

  • Fan, Ting-Ting;Cheng, Ying;Wang, Yin-Feng;Gui, Shu-Yu;Chen, Fei-Hu;Zhou, Qing;Wang, Yuan
    • Asian Pacific Journal of Cancer Prevention
    • /
    • 제15권18호
    • /
    • pp.7687-7692
    • /
    • 2014
  • Aim: To observe the effects of a novel all-trans retinoid acid (ATRA) derivative, N-(3-trifluoromethyl-phenyl)-retinamide (ATPR), on lung adenocarcinoma A549 cells and to explore the potential mechanism of ATPR inhibiting of A549 cell migration. Materials and Methods: The cytotoxicity of ATRA and ATPR on A549 cells was assessed using MTT assay. Wound healing assays were used to analyze the influences of ATRA, ATPR, ML-7 (a highly selective inhibitor of myosin light chain kinase (MLCK)), PMA (an activator of MAPKs) and PD98059 (a selective inhibitor of ERK1/2) on the migration of A549 cells. Expression of MLCK and phosphorylation of myosin light chain (MLC) were assessed by Western blotting. Results: ATRA and ATPR inhibited the proliferation of A549 cells in a dose- and time-dependent manner, and the effect of ATPR was much more remarkable compared with ATRA. Relative migration rate and migration distance of A549 cells both decreased significantly after treatment with ATPR or ML-7. The effect on cell migration of PD98059 combining ATPR treatment was more notable than that of ATPR alone. Moreover, compared with control groups, the expression levels of MLCK and phosphorylated MLC in A549 cells were both clearly reduced in ATRA and ATPR groups. Conclusions: ATPR could suppress the migration and invasion of A549 cells, and the mechanism might be concerned with down-regulating the expression of MLCK in the ERK-MAPK signaling pathway, pointing to therapeutic prospects in lung cancer.