• Title/Summary/Keyword: N mass balance

Search Result 114, Processing Time 0.022 seconds

A Study on the Removal of Ammonia by Using Peat Biofilter (미생물 활성토탄을 이용한 암모니아 제거에 관한 연구)

  • Choung, Youn Kyoo;Ahn, Jun Seong
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.14 no.3
    • /
    • pp.655-668
    • /
    • 1994
  • Conventional deodorization filters using soil and compost reach the capacity limitation of deodorization in short period, because its removal mechanism primarily depends on adsorption. Therefore, in this study the experiment was performed on the removal of ammonia which is a strong inorganic malodor, frequently emitted from night soil treatment plants and sewage treatment plants, by seeding activated sludges on the bio-peat containing higher organic contents, water conservation capacity, permeability and lower pressure drop. As a result, in raw peat filter natural ammonia outlet was observed in consequence of pH increase resulted from ammonia ionizing in liquid phase. Ammonia removal mechanism primarily depended on the adsorption onto the anion colloidal substances in peat. In peat bio-filter, theoretical ammonium salts ratio was higher than that of raw peat, resulted from slight pH increase by microorganism activity, however, the experimetal value of ammonia-nitrogen accumulated in bio-peat was lower than that of raw peat because of nitrification by nitrifying bacteria. In the initial reaction period, adsorption was predominant in the ammonia removal mechanism, but nitrification was conspicuous after the middle period. Mass balance of nitrogen was established using experimental data of input $NH_3$ loading, output $NH_3$ loading, $NH_4{^+}$-N, $NO_x$-N, and Org-N. The critical time of unsteady state, which is the maximum activating point of microorganism in bio-filter, was determined using experimental data, and the ammonia adsorption curve was computed using regression analysis. On the basis of the results obtained by above analysis, the delay days for the saturation of adsoption capacity in peat bio-filter was calculated.

  • PDF

The Improvement in Signal Integrity of FT-ICR MS (FT-ICR 질량분석기의 신호 충실성 향상)

  • Kim, Seung-Yong;Kim, Seok-Yoon;Kim, Hyun Sik
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.60 no.1
    • /
    • pp.201-204
    • /
    • 2011
  • For efficient noise reduction in a Fourier transform ion cyclotron resonance (FT-ICR) mass spectrum, a new algorithm was proposed. The suggested algorithm reduces white and electrical noise, and it improves signal-to-noise ratio. This algorithm has been optimized to reduce the noise more efficiently using the traces of signal level. The algorithm has been efficiently combined with derivative window to improve the resolution as well S/N. Time domain data was corrected for DC voltage interference. $t^n$ window was applied in time domain data to improved the resolution. However, $t^n$ window can improve the signal resolution, it will also increase the noise level in frequency domain. Therefore, newly developed noise reduction algorithm will be applied to make a balance between resolving power and S/N ratio for magnitude mode. The trace algorithm can determine the current data point with several data points (mean, past data, calculated past data). In the current calculations, we assumed data points with S/N ratio more than 3 were considered as signal data points. After the windowing and noise reduction, both resolution and signal-to-noise ratio were improved. This algorithm is applicable more efficiently to frequency dependent noise and large size data.

The Influence of Diet, Body Fat, Menstrual Function, and Activity upon the Bone Density of Female Gymnasts (신체구성성분, 영양상태 및 월경기능이 여자체조선수의 골밀도에 미치는 영향(제2보))

  • 우순임
    • Journal of Nutrition and Health
    • /
    • v.32 no.1
    • /
    • pp.50-63
    • /
    • 1999
  • This study was conducted with 20 female gymnasts and 23 age-matched controls to examine the relationship of diet, menstrual function and bone mineral density (BMD). The results obtained are summarized as follows : Energy intake of gymnasts was 968.9$\pm$421.4kcal, and energy expenditure was 2091.4$\pm$361kcal showing negative energy balance(-1,122.5$\pm$534.6kcal). The average intakes of calcium, iron, vitamin A, thiamin, riboflavin and niacin did not meet the Recommended Dietary Allowances for their age groups. Mean age at menarche in gymnasts is 15.8$\pm$1.2 years compared with 11.8$\pm$2.8 years in age-matched controls. The profile of estradiol, progesterone, and luteinizing hormone was lower than age-matched controls but not significant. Athletic amenorrheic gymnasts(n=12) have the menstrual irregularity(n=10) and amenorrhea(n=2). A number of variables as such nutritional deficiency in diet, negative energy blasnce and hypogonadotropic hormonal status were included. The bone mineral density (BMD) of female gymnasts were significantly higher than controls for the lumbar neck(p<0.001), trochanter(p<0.01), and Ward's triangle(p<0.001), but there were no significant differences for the lumbar spine and forearm. The lumbar spine BMD had a positive correlation with age and lean body weight. The femoral neck BMD was significantly associated with age, group and lean body mass. The trochanter BMD had significant relationship with group, body mass index, energy expenditure and follicular stimulating hormone. Ward's triangle BMD were related to body mass index and follicular stimulating hormone. The significant association was deterced between forearm BMD and age and lean body weight. The major finding of this investigation is that the BMD of gymnasts were higher than age-matched controls despite the fact that gymnasts as a group had inadequate dietary calcium and a higher propensity to have an interruption of their menstrual cycle. These data indicate that grymnsts involved in sports producing significant impact loading on the skeleton had greater femoral neck, trochanter and Ward's triangle bone density than age-matched controls.

  • PDF

Mass Balance of Salts, DIP, DIN and DON in the Gomso Tidal Flat (곰소만 조간대에서 Salts, DIP, TDN의 물질 수지)

  • Jeong Yong-Hoon;Kim Yeong-Tae;Kim Ki-Hyun;Kim Soh-Young;Kim Byung-Hoon;Yang Jae-Sam
    • The Sea:JOURNAL OF THE KOREAN SOCIETY OF OCEANOGRAPHY
    • /
    • v.11 no.2
    • /
    • pp.68-81
    • /
    • 2006
  • As one of the on-going projects to investigate the biogeochemical characteristics of tidal flat, we develop seasonal mass balance calculations (or DIP, DIN and DON in Gomso Bay. We have obtained 13-hours time-series data of salinity, tidal current, nutrients, and chlorophyll-a of seawater for spring, dry summer, rainy summer and winter during $1999{\sim}2000$. DIP of $-1.10{\times}10^6g\;P\;day^{-1},\;-4.50{\times}10^5g\;P\;day^{-1}$ was out-fluxed from the bay to the bay proper for spring and dry summer, respectively. Whereas $1.06{\times}10^4g\;P\;day^{-1}$ of net influx of DIP was found during winter and $2.72{\times}10^6g\;P\;day^{-1}$ of net influx was also found during the rainy summer. Therefore we suggest the role of Gomso tidal flat as a source of DIP fur the seasons of spring and summer, but as an opposite role during the rainy summer and winter but much smaller in magnitude. Except winter, the advection process by tidal current is found the most dominant flux among the diverse fluxes of DIP in the bay. Whereas ground water is estimated as the strongest flux of TDN except winter. TDN of $1.38{\times}10^7g\;N\;day^{-1},\;2.45{\times}10^6g\;N\;day^{-1},\;and\;4.65{\times}10^7g\;N\;day^{-1}$ was in-fluxed to the bay from the bay proper far spring, rainy summer and summer, respectively. Only $-1.70{\times}10^7g\;N\;day^{-1}$ of net out-flux was found during the winter. Therefore we suggest the role of Gomso tidal flat as a sink of TDN far the year round except winter.

Changes in body composition, body balance, metabolic parameters and eating behavior among overweight and obese women due to adherence to the Pilates exercise program (과체중·비만인에서 필라테스 운동 순응도에 따른 식생활 변화, 체구성, 신체 균형도 및 대사지표 개선효과)

  • Hyun Ju Kim;Jihyun Park;Mi Ri Ha;Ye Jin Kim;Chaerin Kim;Oh Yoen Kim
    • Journal of Nutrition and Health
    • /
    • v.55 no.6
    • /
    • pp.642-655
    • /
    • 2022
  • Purpose: We examined the effects of the 8-week moderate-intensity Pilates exercise program on body composition, balance ability, metabolic parameters, arterial condition, and eating habits among overweight and obese women. Methods: From the general sample of overweight or obese Korean women (body mass index ≥ 23 kg/m2 ), those who had not been diagnosed with any chronic degenerative diseases were enrolled in the study (n = 39). After 8 weeks of the Pilates exercise program, the participants were subdivided into adherence and non-adherence groups. Among the study participants, 24 women were matched for age and menopausal status to reduce the bias, and then finally included for the comparison (Pilates-adherence, n = 12; Pilates-non-adherence, n = 12). Results: The body balance measured by the Y-balance test, body mass index, and subcutaneous fat areas were significantly improved in both groups. However, the Pilate-sadherence group showed more positive changes in body balance and had significant improvement in body composition parameters such as waist size, visceral fat area, systolic blood pressure, arterial aging index, fasting blood glucose, and glycated hemoglobin than the Pilates-non-adherence group. In addition, the nutrition quotient for Korean adults (balance, moderation, and behavior except diversity) were significantly improved in both groups after dietary education. However, the participants did not show dramatic improvement in the metabolic parameters, because all the study subjects were in relatively good health and did not have any diagnosed diseases. Conclusion: This study demonstrated that higher adherence to the Pilates exercise program together with a modification of eating habits may effectively improve body balance, body composition, and obesity-related parameters among overweight and obese women.

Estimation of the Pollutant Loads from Paddy Fields by Cultivation Practices Using a Non-point-source Model (비점원오염모델을 이용한 논의 영농방법별 오염부하량 예측)

  • Han, Kuk-Heon
    • Korean Journal of Environmental Agriculture
    • /
    • v.27 no.1
    • /
    • pp.10-17
    • /
    • 2008
  • The objective of this study was to estimate the pollutant loads from paddy fields by cultivation practices using a non-point-sources models. One of them is CREAMS-PADDY model that was developed considering the water balance and mass balance of paddy fields. The CREAMS-PADDY model was applied to provide basic data to reduce runoff loadings under various scenarios such as various water management control and various fertilizer condition. The model was verified against T-N, T-P and runoff flow data collected during cropping periods at 2000. The model results agreed well with the measured data in verification. The results showed that the model could be used for estimating the runoff loadings from irrigated paddy fields by cultivation practices was possible. Comparison of simulated the standard height and the sluice management of T-N and T-P runoff loadings from paddy fields were +32.4%, +10.3% in 10 mm below the standard height, -29.2%, -35.9% in 20 mm above the standard height, 52.6%, 59.0% in 40 mm above the standard height, respectively. Comparison of simulated the standard fertilizer and the fertilizer control of T-N and T-P runoff loadings from paddy fields were -1.3%, -21.7%in reduction of conventional fertilizer 30%, -1.0%, -12.5% in reduction of standard fertilizer 30%, respectively. Therefore, reducing nonpoint-sources nutrient loading by reducing fertilization may not work well in the range of normal paddy rice farming practices, and instead it could be achieved by reducing surface drainage outflow.

다변량 통계 분석 및 질량 균형법을 이용한 제주도 지하수의 수질 요소 분리

  • 고동찬;고경석;김용제;이승구
    • Proceedings of the Korean Society of Soil and Groundwater Environment Conference
    • /
    • 2004.09a
    • /
    • pp.450-452
    • /
    • 2004
  • Using factor analysis and bivariate comparisons of major components in ground water, three geochemical processes were identified as controlling factors of ground water chemistry; 1) natural mineralization by water rock interactions, 2) effect of seawater which includes salinization by seawater near seashores and deposition of sea salt, and 3) nitrate contamination by N fertilization. Contribution of rainfall was also estimated from the measured composition of wet deposition. The geochemical processes were separated using total alkalinity as an indicator for natural mineralization, Cl for effect of seawater, and nitrate for N fertilization. Relatively high correlation of major components with nitrate suggests that nitrification of nitrogenous fertilizers significantly affects ground water chemistry. Total cations derived from nitrate sources have good linearity for nitrate in equivalent basis with a slope of 1.8, which is a mean of proton production coefficients in nitrification of two major compounds in nitrogenous fertilizers, ammonium and urea. Contribution of nitrate sources to base cations, Cl, and SO$_4$ in ground water was determined considering maximum contribution of natural mineralization to estimate a threshold of the effect of N fertilization for ground water chemistry, which shows W fertilization has a greatest effect than any other processes in ground water with nitrate concentration greater than 50 mg/L for Ca, Mg, Na and with concentration greater than 30 mg/L for Cl and SO$_4$.

  • PDF

The characteristic analysis and model of PEM fuel cell for residential application (가정용 고분자 연료전지의 모델과 특성해석)

  • Cho, Y.R.;Kim, N.H.;Han, K.H.;Joo, K.D.;Yun, S.Y.;Baek, S.H.
    • Proceedings of the KIEE Conference
    • /
    • 2005.04a
    • /
    • pp.277-279
    • /
    • 2005
  • The imbalance of energy demand and supply caused by rapid industrialization around the world and the associated environmental issues require and alternative energy source with possible renewable fuels. Political instability and depletion of cruel oils are other factors that cause fluctuation of oil price. Securing a new alternative energy source for the next century became an urgent issue that our nation is confronting with. As a matter of fact, the fuel cell technology can be widely used as next generation energy regardless of regions and climate. Specially, the ability of expansion and quick installation enable one to apply it for distributed power, where the technology is already gaining remarkable attentions for the application. Particularly, leading industrialized nations are focusing on the PEM fuel dell with anticipation that this technology will find their place of applications in the vehicles and homes. In this study, demonstrate the multi physics modeling of a proton exchange membrane(PEM) fuel cell with interdigitated flow field design. The model uses current balances, mass balance(Maxwell-Stefan diffusion for reactant, water and nitrogen gas) and momentum balance(gas flow) to simulate the PEM fuel cell behavior.

  • PDF

Prediction of Sorption Characteristics by Mass Balance Concept (함량비례 개념에 의한 수분흡습 특성의 예측)

  • Yoon, Heeny H.N.;Kim, H.;Shin, Y.D.;Yoo, M.Y.
    • Korean Journal of Food Science and Technology
    • /
    • v.18 no.2
    • /
    • pp.77-81
    • /
    • 1986
  • The water sorption isotherms of individual insoluble components of corn starch, isolated soybean protein (ISP) and casein and their binary mixtures of corn starch-lSP and corn starch-casein were measured and analyzed. BET monolayer values and Smith plot parameters from the results of sorption isotherms were calculated by mass balance concept . The comparisons between experimental and predicted values resulted in an error of 2.29% for equilibrium moisture content and an error of 2.95% in monolayer value for the mixture 50% corn starch-50% ISP. On the other hand , for the mixture 50% corn starch-50% casein the errors were 2.66% and-5.34%, respectively.

  • PDF

Comparison of Pollutants Removal between the Intermittently Aerated Bioreactor(IABR) and Intermittently Aerated Membrane Bioreactor(IAMBR) (간헐포기공정과 막결합 간헐포기공정의 오염물질 제거특성 비교)

  • Choi, Chang Gyoo;Lee, Kwang Ho
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.26 no.1B
    • /
    • pp.119-124
    • /
    • 2006
  • The purpose of this study was the comparison of pollutants removal and the track study of the nitrogen and phosphorus, the estimation of the nitrification and denitrification rate, and the investigation of the nitrogen mass balance between intermittently aerated membrane bioreactor(IAMBR) and intermittently aerated bioreactor(IABR), thus it verified the validity of the membrane submergence. As a result, it had no difference of organic matter removal, however, IAMBR showed better efficiency than IABR in the nutrients. Also, $NO_3{^-}$-N concentration at the anoxic state in the reactor was lower in IAMBR, and the denitrified nitrogen of IAMBR was 40.9%, that of IABR was 10.7%, thus it found out that the denitrification capability of IAMBR was higher than IABR above fourfold. Therefore, it seems resonable to conclude that the membrane helps to improve the removal of pollutants, because of the high MLSS concentration and the available method of intermittent inflow/outflow.