• Title/Summary/Keyword: N,N,S-Donor ligands

Search Result 9, Processing Time 0.025 seconds

Oxovanadium(IV) Complexes Containing VO(ONS) Basic Core: Synthesis, Structure, and Spectroscopic Properties

  • Jang, Yoon-Jung;Lee, Uk;Koo, Bon-Kweon
    • Bulletin of the Korean Chemical Society
    • /
    • v.26 no.1
    • /
    • pp.72-76
    • /
    • 2005
  • Some mononuclear oxovanadium(IV) complexes having the general formula [VOL(bidentate)] (1-4) of which L is tridentate ONS-donor salicylaldehyde S-methyldithiocarbazate (sal-mdtc$^{2-}$) or salicylaldehyde 4- phenylthiosemicarbazate (sal-phtsc$^{2-}$) and bidentate stands for 2,2'-bipyridyl (bpy) or 1,10-phenanthroline (phen) have been synthesized. The complexes were characterized by elemental analyses, FAB mass, UV, IR spectroscopy, and cyclic voltammetry. Two of the complexes [VO(sal-mdtc)(bpy)] (1) and [VO(sal-mdtc) (phen)] (2) were crystallographically characterized. The structures revealed that vanadium atom is octahedrally coordinated by the O, N, and S donor atoms of the tridentate ligand, the two N atoms of bidentate ligand, and the oxo atom. The oxygen donor, occupying an apical position has a trans-labilizing effect, resulting in elongation of the V-N bond. The cyclic voltammograms of the complexes exhibited one cathodic response in the range −d1.45 $\sim$ −f1.52 V due to the reduction of V(IV) to V(III).

Synthesis and Characterization of Molybdenum(V) Complexes with Tridentate Schiff Bases

  • Jung Sook Kim;Bon Kweon Koo
    • Bulletin of the Korean Chemical Society
    • /
    • v.13 no.5
    • /
    • pp.507-511
    • /
    • 1992
  • Six-coordinate molybdenum(V) complexes X[MoO$(NCS)_2$(L)], where X=$PyH^+$, $Me_4N^+$, $Et_4N^+$, n-$Bu_4N^+$, and L= the tridentate schiff base dianions derived from the condensation reaction between various salicylaldehydes and 2-aminophenol have been synthesized. The complexes have been characterized by elemental analysis, conductivity, UV-visible, IR, $^1H$-NMR, and mass spectroscopy. The coordination around the molybdenum appears to be distorted octahedral. A tridentate ligand containing the ONO donor atoms occupies meridional positions with the N atom trans to the terminal oxo group. Two NCS ligands bond to the molybdenum through the N atom and are cis to the Mo = $O_t$ group. The electrochemical behaviors of the complexes have also been investigated by cyclic voltammetry in dimethylsulfoxide.

Synthesis and Crystal Structures of Copper(II) Complexes with Schiff Base Ligands: [Cu2(acpy-mdtc)2(HBA)(ClO4)]·H2O and [Cu2(acpy-phtsc)2(HBA)]·ClO4

  • Koo, Bon Kweon
    • Bulletin of the Korean Chemical Society
    • /
    • v.34 no.11
    • /
    • pp.3233-3238
    • /
    • 2013
  • Two new Cu(II) complexes, $[Cu_2(acpy-mdtc)_2(HBA)(ClO_4)]{\cdot}H_2O$ (1) (acpy-mdtc- = 2-acetylpyridine S-methyldithiocarbamate and $HBA^-$ = benzilic acid anion) and $[Cu_2(acpy-phtsc)_2(HBA)]{\cdot}ClO_4$ (2) (acpy-$phtsc^-$ = 2-acetylpyridine 4-phenyl-3-thiosemicarbazate) have been synthesized and characterized by elemental analysis, infrared spectroscopy, thermogravimetric analysis, and single crystal X-ray diffraction. The X-ray analysis reveals that the structures of 1 and 2 are dinuclear copper(II) complexes bridged by two thiolate sulfur atoms of Schiff base ligand and bidentate bridging $HBA^-$ anion. For 1, each of the two copper atoms has different coordination environments. Cu1 adopts a five-coordinate square-pyramidal with a $N_2OS_2$ donor, while Cu2 exhibits a distorted octahedral geometry in a $N_2O_2S_2$ manner. For 2, two Cu(II) ions all have a five-coordinate square-pyramidal with a $N_2OS_2$ donor. In each complex, the Schiff base ligand is coordinated to copper ions as a tridentate thiol mode.

Decomposition Studies of DFP Using Transition Metal Catalysts (전이금속촉매를 사용한 DFP 분해 성능 연구)

  • Kye, Young-Sik;Jeong, Keunhong;Chung, Woo Young
    • Applied Chemistry for Engineering
    • /
    • v.21 no.1
    • /
    • pp.1-5
    • /
    • 2010
  • Cu(II)-organic complexes were synthesized with Lewis base organic ligands including diamine, aminothiol, and dithiol to determine the reactivity for DFP hydrolysis. Results show that the aminothiol catalyst enhances the hydrolysis of DFP in three folds compared to diamine type because aminothiol has higher basicity than diamine. Due to low solubility of Cu(II)(1,2-ethane dithiol)$(NO_3)_2$, it is impossible to compare directly the rates in homogeneous condition. However, the rate of dithol complex is even 1.6 times faster than that of the diamine type. The reactivity of zeolite for DFP hydrolysis is also evaluated. NaY type does not promote the hydrolysis, but RuNaY shows relatively lower reactivity than those of Cu(II)-organic ligands complexes.

Synthesis of New VO(II), Co(II), Ni(II) and Cu(II) Complexes with Isatin-3-Chloro-4-Floroaniline and 2-Pyridinecarboxylidene-4-Aminoantipyrine and their Antimicrobial Studies

  • Mishra, Anand P.;Mishra, Rudra;Jain, Rajendra;Gupta, Santosh
    • Mycobiology
    • /
    • v.40 no.1
    • /
    • pp.20-26
    • /
    • 2012
  • The complexes of tailor made ligands with life essential metal ions may be an emerging area to answer the problems of multi drug resistance. The coordination complexes of VO(II), Co(II), Ni(II) and Cu(II) with the Schiff bases derived from isatin with 3-chloro-4-floroaniline and 2-pyridinecarboxaldehyde with 4-aminoantipyrine have been synthesized by conventional as well as microwave methods. These compounds have been characterized by elemental analysis, molar conductance, electronic spectra, FT-IR, FAB mass and magnetic susceptibility measurements. FAB mass data show degradation of complexes. Both the ligands behave as bidentate and tridentate coordinating through O and N donor. The complexes exhibit coordination number 4, 5 or 6. The Schiff base and metal complexes show a good activity against the bacteria; $Staphylococcus$ $aureus$, $Escherichia$ $coli$ and $Streptococcus$ $fecalis$ and fungi $Aspergillus$ $niger$, $Trichoderma$ $polysporum$, $Candida$ $albicans$ and $Aspergillus$ $flavus$. The antimicrobial results also indicate that the metal complexes are better antimicrobial agents as compared to the Schiff bases. The minimum inhibitory concentrations of the metal complexes were found in the range 10-40 ${\mu}g/mL$.

Synthesis, Physico-Chemical and Biological Properties of Complexes of Cobalt(II) Derived from Hydrazones of Isonicotinic Acid Hydrazide (Isonicotinic Acid Hydrazide의 Hydrazone으로부터 유도된 코발트(II) 착물의 합성, 물리-화학 및 생물학적 성질)

  • Prasad, Surendra;Agarwal, Ram K.
    • Journal of the Korean Chemical Society
    • /
    • v.53 no.1
    • /
    • pp.17-26
    • /
    • 2009
  • Hydrazones of isonicotinic acid hydrazide, viz., N-isonicotinamido-furfuralaldimine (INH-FFL), N-isonicotnamido-cinnamalidine (INH-CIN) and N-isonicotnamido-3',4',5'-trimethoxybenzaldimine (INH-TMB) were prepared by reacting isonicotinic acid hydrazide with respective aromatic aldehydes, i.e., furfural, cinnamaldehyde or 3,4,5-trimethoxy-benzaldehyde. A new series of fifteen complexes of cobalt(II) with these new hydrazones, INH-FFL, INH-CIN and INH-TMB, were synthesized by their reaction with cobalt(II) salts. The infrared spectral data reveal that hydrazone ligands behave as a bidentate ligand with N, O donor sequence towards the $Co^{2+}$ ion. The complexes were characterized on the basis of elemental analysis, magnetic susceptibility, conductivity, infrared and electronic spectral measurements. Analytical data reveal that the complexes have general composition [Co($L)_2X_2]\;and\;[Co(L)_3](ClO_4)_2$ where L= INH-FFL, INH-CIN or INH-TMB and X = $Cl^-,{NO_3}-,\;NCS^-\;or\;CH_3COO^-.$ The thermal behaviour of the complexes were studied using thermogravimetrictechnique. Electronic spectral results and magnetic susceptibility measurements are consistent with the adoption of a six-coordinate geometry for the cobalt(II) chelates. The antimicrobial properties of cobalt(II) complexes and few standard drugs have revealed that the complexes have very moderate antibacterial activities.

Studies on the Electrochemical Behavior of Heavy Lanthanide Ions and the Synthesis, Characterization of Heavy Metal Chelate Complexes(II). Synthesis and Characterization of Eight Coordinate Tungsten(IV) and Cerium(IV) Chelate Complex (무거운 란탄이온의 전기화학적 거동 및 중금속이온의 킬레이트형 착물의 합성 및 특성에 관한 연구(제2보). 8배위 텅스텐(IV)과 세륨(IV)의 킬레이트형 착물의 합성 및 특성)

  • Kang, Sam Woo;Chang, Choo Wan;Suh, Moo Yul;Lee, Doo Youn;Choi, Won Jong
    • Analytical Science and Technology
    • /
    • v.5 no.1
    • /
    • pp.41-49
    • /
    • 1992
  • An attempt was made to prepare two series of tetrakis eight-coordinate tungsten(IV) and cerium(IV) complexes containing the 5,7-dichloro-8-quinolinol(N:${\pi}$-acceptor atom, O:${\pi}$-donor atom) ligand. Tetrakis eight-coordinate tungsten(IV) complex of 2-mercaptopyrimidine(N:${\pi}$-acceptor atom, S:${\pi}$-donor atom) ligand have also been prepared. And the new series of mixed-ligand eight-coordinate tungsten(IV) complexes containing bidentate ligands 5,7-dichloro-8-quinolinol and 2-mercaptopyrimidine have been prepared, isolated by TLC and characterized. $W(dcq)_4$, $W(dcq)_3(mpd)_1$, $W(dcq)_2(mpd)_2$, $W(dcq)_1W(dcq)_3$ and $W(mpd)_4$ complexes of MLCT absorption band appeared to 710nm, 680nm, 625nm, 581nm, and 571nm(${\varepsilon}\;max={\sim}>{\times}10^4$) on low-energy respectively. The specific absorption wave length of $Ce(dcq)_4$ is appeared 520nm(${\varepsilon}\;max={\sim}>{\times}10^4$). The Chemical shift values by proton of coordinated position appeared to $W(dcq)_4$ [$H_2:8.9ppm$]; $W(dcq)_3(mpd)_1$ [$H_2:9.3$,$H_6:9.2ppm$]; $W(dcq)_2(mpd)_2$ [$H_2:9.7$,$H_6:8.95ppm$]; $W(dcq)_1(mpd)_3$ [$H_2:9.8$,$H_6:9.4ppm$]; $W(mpd)_4$ [$H_6:8.8ppm$]; $Ce(dcq)_4$ [$H_2:9.3ppm$] with $^1H$-NMR. The inertness of mixed-ligand eight coordinate tungsten(IV) complexes have been investigated by UV-Vis. spectroscopic method in dimethylsulfoxide at $90^{\circ}C$. The inertness of $W(dcq)_n(mpd)_{4-n}$ complexes showed the following order, $W(dcq)_3(mpd)_1;k_{obs.}=3.8{\times}10^{-6}$ > $W(mpd)_4;k_{obs.}=6.0{\times}10^{-6}$ > $W(dcq)_4;k_{obs.}=6.4{\times}10^{-6}$ > $W(dcq)_2(mpd)_2;k_{obs.}=7.0{\times}10^{-6}$ > $W(dcq)_1(mpd)_3;k_{obs.}=1.7{\times}10^{-5}$, which showed the inertness until 16days, 10days, 9days, 8days, and 4days. The $W(mpd)_4$ is very inert as $k_{obs.}=3.6{\times}10^{-6}$(16days) in xylene at $90^{\circ}C$ and $k_{obs.}=6.0{\times}10^{-6}$(10days) in DMSO at $90^{\circ}C$.

  • PDF