• Title/Summary/Keyword: N$_2$-BET 비표면적

Search Result 49, Processing Time 0.026 seconds

A preparation of hexacelsian powder by solution-polymerization route and its phase transformation behavior (Solution- polymerization 방법에 의한 hexacelsian 분말의 합성 및 상전이 공정에 의한 celsian 소결체의 제조)

  • Sang-Jin Lee;Young-Soo Yoon
    • Journal of the Korean Crystal Growth and Crystal Technology
    • /
    • v.7 no.3
    • /
    • pp.428-436
    • /
    • 1997
  • Hexacelsian ($BaO{\cdot}Al_2O_3{\cdot}2SiO_2$) powder was prepared by a solution-polymerization route employing PVA solution as a polymeric carrier. A fine amorphous-type hexacelsian powder with an average particle size of 0.8 $\mu \textrm{m}$ and a BET specific surface area of $63 \textrm{m}^2$/g was made by a ball-milling the powder precursor for 12 h after calcination at $800^{\circ}C$ for :1 h. A densified hexacelsian was obtained through sintering at $1550^{\circ}C$ for 2 h under an air atmosphere. The $\alpha\longleftrightarrow\beta$ and $\beta\longleftrightarrow\gamma$ displacive phase transformation in polycrystalline hexacelsia,n was examined by using dilatometry and differential scanning calorimtry. The reconstructive transformation between hexacelsian and celsian was obtained by annealing at $1600^{\circ}C$ for 72h. Volume contraction of 5.6% was accompanied by the reconstructive transformation.

  • PDF

Evaluation of TiN-Zr Hydrogen Permeation Membrane by MLCA (Material Life Cycle Assessment) (물질전과정평가(MLCA)를 통한 TiN-Zr 수소분리막의 환경성 평가)

  • Kim, Min-Gyeom;Son, Jong-Tae;Hong, Tae-Whan
    • Clean Technology
    • /
    • v.24 no.1
    • /
    • pp.9-14
    • /
    • 2018
  • In this study, Material life cycle evaluation was performed to analyze the environmental impact characteristics of TiN-Zr membrane manufacturing process. The software of MLCA was Gabi. Through this, environmental impact assessment was performed for each process. Transition metal nitrides have been researched extensively because of their properties. Among these, TiN has the most attention. TiN is a ceramic materials which possess the good combination of physical and chemical properties, such as high melting point, high hardness, and relatively low specific gravity, high wear resistance and high corrosion resistance. With these properties, TiN plays an important role in functional materials for application in separation hydrogen from fossil fuel. Precursor TiN was synthesized by sol-gel method and zirconium was coated by ball mill method. The metallurgical, physical and thermodynamic characteristics of the membranes were analyzed by using Scanning Electron Microscope (SEM), Energy Dispersive X-ray (EDS), X-ray Diffraction (XRD), Thermo Gravimetry/Differential Thermal Analysis (TG/DTA), Brunauer, Emmett, Teller (BET) and Gas Chromatograph System (GP). As a result of characterization and normalization, environmental impacts were 94% in MAETP (Marine Aquatic Ecotoxicity), 2% FAETP (Freshwater Aquatic Ecotoxicity), 2% HTP (Human Toxicity Potential). TiN fabrication process appears to have a direct or indirect impact on the human body. It is believed that the greatest impact that HTP can have on human is the carcinogenic properties. This shows that electricity use has a great influence on ecosystem impact. TiN-Zr was analyzed in Eco-Indicator '99 (EI99) and CML 2001 methodology.

NO Adsorption and Catalytic Reduction Mechanism of Electrolytically Copper-plated Activated Carbon Fibers (전해 구리 도금된 활성탄소섬유에 의한 NO의 촉매 환원반응 메커니즘 연구)

  • Park, Soo-Jin;Jang, Yu-Sin;Kawasaki, Junjiro
    • Korean Chemical Engineering Research
    • /
    • v.40 no.6
    • /
    • pp.664-668
    • /
    • 2002
  • In this work, the catalytic reduction mechanisms of NO over ACFs/copper prepared by electrolytic copper plating has been studied. It was found that copper content on carbon surfaces increased with increasing the plating time. However, a slightly gradual decrease of adsorption properties, such as, BET specific surface area, was observed in increasing the plating times within the range of well-developed micropore structures. As experimental results, nitric oxide was converted into the nitrogen and oxygen on ACFs and ACFs/copper catalyst surfaces at $500^{\circ}C$. Especially, the surfaces of ACFs/copper catalyst were found to scavenge the oxygen released by catalytic reduction of NO, which could be explained by the presence of another nitric oxide reduction mechanism between ACFs and ACFs/copper catalysts.

A Study on the Peel Strength of Silane-treated Silicas-filled Epoxy Adhesives (실란처리 되어진 실리카가 첨가된 에폭시 접착제의 접착박리강도에 관한 연구)

  • Choi, Bo-Kyung;Kim, Hong-Gun;Seo, Min-Kang;Park, Soo-Jin
    • Applied Chemistry for Engineering
    • /
    • v.25 no.5
    • /
    • pp.520-525
    • /
    • 2014
  • In this paper, the effect of silane-treated silicas and epoxidized soybean oil (ESBO) addition on adhesion properties of silicas-filled epoxy adhesives was examined. The silicas were treated by ${\gamma}$-methacryloxy propyltrimethoxy silane (MPS), ${\gamma}$-glycidoxy propyl trimethoxy silane (GPS), and ${\gamma}$-mercapto propyl trimethoxy silane (MCPS). Surface and structural properties of the adhesives were determined by using scanning electron microscope (SEM) and Fourier transform infrared spectroscopy (FT-IR). The t-peel strength of the adhesives was estimated using the universal testing machine (UTM). And, the equilibrium spreading pressure, surface free energy, and specific surface area were investigated by BET methods with $N_2$/77 K adsorption. As a result, the peel strength of the adhesives was increased in the presence of silane-treated silicas in the adhesives compared to that of untreated silicas. This result indicated that the silane coupling agent played an important role in improving the dispersion of silicas in epoxy adhesives. And, the adhesives treated by MCPS were superior to the others in adhesion.

Preparation and Characterization of Cu/MCM-41 Mesoporous Catalysts for NO Removal (Cu/MCM-41 메조포러스 촉매 제조 및 NO 제거 특성)

  • Park, Soo-Jin;Cho, Mi-Hwa;Kim, Seok;Kwon, Soo-Han
    • Applied Chemistry for Engineering
    • /
    • v.16 no.6
    • /
    • pp.737-741
    • /
    • 2005
  • In this study, the effect of copper content on the NO removal efficiency by Cu/MCM-41 has been investigated. MCM-41 was prepared by hydrothermal synthesis using a gel mixture of colloidal silica solution and cetyltrimethylammonium. Cu/MCM-41 was manufactured with copper content (5, 10, 20, and 40%) in Cu(II) acetylacetonate. The surface properties of MCM-41 were investigated by using pH, XRD, and FT-IR analyses. $N_2/77K$ adsorption isotherm characteristics, including the specific surface area and micropore volume were studied by BET's equation and Boer's t-plot methods. NO removal efficiency was confirmed by gas chromatography technique. From the experimental results, the MCM-41 was analyzed to have the surface functional groups of Si-OH and Si-O-Si and the characteristic diffraction lines (100), (110), (200), and (210) corresponding to a hexagonal arrangement structure. The copper content supported on MCM-41 appeared to increase the NO removal efficiency in spite of decreasing the specific surface areas or micropore volumes. Consequently, it was found that the copper content in Cu/MCM-41 played an important role in improving the NO removal efficiency, which was mainly attributed to the catalytic reactions.

Investigation on CO Adsorption and Catalytic Oxidation of Commercial Impregnated Activated Carbons (상용 첨착활성탄의 일산화탄소 흡착성능 및 촉매산화반응 연구)

  • Ko, Sangwon;Kim, Dae Han;Kim, Young Dok;Park, Duckshin;Jeong, Wootae;Lee, Duck Hee;Lee, Jae-Young;Kwon, Soon-Bark
    • Applied Chemistry for Engineering
    • /
    • v.24 no.5
    • /
    • pp.513-517
    • /
    • 2013
  • We investigated the properties of impregnated activated carbons, a commercial adsorbent for the individual protection equipment, and examined CO adsorption and oxidation to $CO_2$. The surface area, pore volume and pore size were measured for four commercial samples using Brunauer-Emmett-Teller/Barrett-Joyner-Halenda (BET/BJH), and atomic compositions of the sample surface were analyzed based on SEM/EDS and XPS. Impregnated activated carbons containing Mn and Cu for fire showed the catalytic CO oxidation to $CO_2$ with a high catalytic activity (up to 99% $CO_2$ yield), followed by the CO adsorption at an initial reaction time. On the other hand, C: for chemical biologial and radiological (CBR) samples, not including Mn, showed a lower CO conversion to $CO_2$ (up to 60% yield) compared to that of fire samples. It was also found that a heat-treated activated carbon has a higher removal capacity both for CO and $CO_2$ at room temperature than that of untreated carbon, which was probably due to the impurity removal in pores resulted in a detection-delay about 30 min.

Study on the production of porous CuO/MnO2 using the mix proportioning method and their properties (반응몰비에 따른 다공성 CuO/MnO2의 제조 및 특성 연구)

  • Kim, W.G.;Woo, D.S.;Cho, N.J.;Kim, Y.O.;Lee, H.S.
    • Analytical Science and Technology
    • /
    • v.28 no.3
    • /
    • pp.182-186
    • /
    • 2015
  • In this study, the porous CuO/MnO2 catalyst was prepared through the co-precipitation process from an aqueous solution of potassium permanganate (KMnO4), manganese(II) acetate (Mn(CH3COO)2·4H2O) and copper(II) acetate (Cu(CH3COO)2·H2O). The phase change in MnO2 was analyzed according to the reaction molar ratio of KMnO4 to Mn(CH3COO)2. The reaction mole ratio of KMnO4 to Mn(CH3COO)2·4H2O was varied at 0.3:1, 0.6:1, and 1:1. The aqueous solution of Cu(CH3COO)2 was injected into a mixed solution of KMnO4 and Mn(CH3COO)2 to 10~75 wt% relative to MnO2. The Cu ion co-precipitates as CuO with MnO2 in a highly dispersed state on MnO2. The physicochemical property of the prepared CuO/MnO2 was analyzed by using the TGA, DSC, XRD, SEM, and BET. The different phase types of MnO2 were prepared according to the reaction mole ratio of KMnO4 to Mn(CH3COO)2·4H2O. The results confirmed that the porous CuO/MnO2 catalyst with γ-phase MnO2 was produced in the reaction mole ratio of KMnO4 to Mn(CH3COO)2 as 0.6:1 at room temperature.

A Comparison Study of Alum Sludge and Ferric Hydroxide Based Adsorbents for Arsenic Adsorption from Mine Water (알럼 및 철수산화물 흡착제의 광산배수 내 비소 흡착성능 비교연구)

  • Choi, Kung-Won;Park, Seong-Sook;Kang, Chan-Ung;Lee, Joon Hak;Kim, Sun Joon
    • Economic and Environmental Geology
    • /
    • v.54 no.6
    • /
    • pp.689-698
    • /
    • 2021
  • Since the mine reclamation scheme was implemented from 2007 in Korea, various remediation programs have been decontaminated the pollution associated with mining and 254 mines were managed to reclamation from 2011 to 2015. However, as the total amount of contaminated mine drainage has been increased due to the discovery of potential hazards and contaminated zone, more efficient and economical treatment technology is required. Therefore, in this study, the adsorption properties of arsenic was evaluated according to the adsorbents which were derived from water treatment sludge(Alum based adsorbent, ABA-500) and granular ferric hydroxide(GFH), already commercialized. The alum sludge and GFH adsorbents consisted of aluminum, silica materials and amorphous iron hydroxide, respectively. The point of zero charge of ABA-500 and GFH were 5.27 and 6.72, respectively. The result of the analysis of BET revealed that the specific surface area of GFH(257 m2·g-1) was larger than ABA-500(126~136 m2·g-1) and all the adsorbents were mesoporous materials inferred from N2 adsorption-desorption isotherm. The adsorption capacity of adsorbents was compared with the batch experiments that were performed at different reaction times, pH, temperature and initial concentrations of arsenic. As a result of kinetic study, it was confirmed that arsenic was adsorbed rapidly in the order of GFH, ABA-500(granule) and ABA-500(3mm). The adsorption kinetics were fitted to the pseudo-second-order kinetic model for all three adsorbents. The amount of adsorbed arsenic was increased with low pH and high temperature regardless of adsorbents. When the adsorbents reacted at different initial concentrations of arsenic in an hour, ABA-500(granule) and GFH could remove the arsenic below the standard of drinking water if the concentration was below 0.2 mg·g-1 and 1 mg·g-1, respectively. The results suggested that the ABA-500(granule), a low-cost adsorbent, had the potential to field application at low contaminated mine drainage.

Manufacture of Activated Carbon Using Livestock Manure and it's Odor Absorptiveness (축분을 이용한 활성탄소 제조와 이의 악취 흡착성 분석)

  • Choi, H.C.;Song, J.I.;Kwon, D.J.;Kwag, J.H.;Yan, C.B.;Yoo, Y.H.;Park, Young-Tae;Park, K.S.;Park, D.K.;Kim, Y.K.
    • Journal of Animal Environmental Science
    • /
    • v.13 no.3
    • /
    • pp.211-218
    • /
    • 2007
  • This study was carried out to develop the technique for manufacturing activated carbon from livestock manure and to analyse it's odor absorptiveness. Each of layer manure(LM), litter from broiler house(BL) and litter from dairy barn(DL), compost from layer manure(LC) and pig manure(PC), and coconut shell(CS) was used as a raw material. Activated carbon by grinding the raw material, adding the coal tar as a binder, palletizing, drying, heating with $N_2$ gas at $400^{\circ}C$ for 1 hour, activating by reaction with steam at a temperature of $750^{\circ}C$ for 1 hour. Moisture contents of raw material was 44.9% in layer compost, 71.9% in layer manure, 24.4% in broiler litter, 47% in pig manure compost and 33.9% in dairy litter. Volatile matter in layer compost, layer manure, broiler litter, pig manure compost and dairy litter was 18.8%, 31.0%, 49.8%, 22.3% and 11.6%, respectively. Surface area(BET) of activated carbon from layer compost, layer manure, broiler litter, pig manure compost, dairy litter and coconut shell was 259.8, 209.8, 63.5, 442.3, 812.9 and $1,040\;m^2/g$, respectively. Activated carbon made by livestock manure or litter were examined with scanning electron microscope, and micropore was a type of sponge like particles honeycombed with chambers. Pore size of activated carbon was ranged from 0.39 to $5.02\;{\AA}$, but coconut shell was $0.30\;{\AA}$. Iodine absorptiveness of activated carbon from livestock manure was $530{\sim}580mg/g$. But activated carbon made by coconut shell was 1000 mg/g. Each activated carbon could absorb odor compound very well. Absorptiveness of activated carbon from layer manure for hydrogen sulfide and trimethyl amino was 74.5% and 73.9% at the accumulated flux of 60,000 ml, but, in the case of ammonia was only 15.2% at the accumulated flux of 10,000 ml

  • PDF