• Title/Summary/Keyword: Myxococcus xanthus

Search Result 17, Processing Time 0.031 seconds

HpkA, a Histidine Protein Kinase Homolog, is Required for Fruiting Body Development in Myxococcus xanthus

  • Park, Sooyeon;Kim, Jihoon;Lee, Bongsoo;Zusman, David R;Cho, Kyungyun
    • Journal of Microbiology and Biotechnology
    • /
    • v.13 no.3
    • /
    • pp.400-405
    • /
    • 2003
  • A gene (hpkA), encoding a histidine protein kinase homolog, has been identified in the upstream region of the espAB operon in Myxococcus xanthus. It encodes a 333 amino acid (35,952 Da) protein with a histidine protein kinase domain in the region from amino acid 90 to 317. Null mutations in the hpkA gene caused formation of loose irregular fruiting bodies, while wild-type strains developed tight hemispherical fruiting bodies under developmental conditions. Sporulation of the hpkA mutant was delayed by at least 12 h compared to that of the wild-type. It appeared that the hpkA mutation increased the expression of the espAB operon by more than 2-fold compared with the wild-type under developmental conditions. Expression of the hpkA gene was low under vegetative conditions, but was highly induced under developmental conditions.

Identification of a Gene Required for Gliding Motility in Myxococcus xanthus

  • Lee Cha-Yul;Chung Jin-Woo;Kim Ji-Hoon;Cho Kyung-Yun
    • Journal of Microbiology and Biotechnology
    • /
    • v.16 no.5
    • /
    • pp.771-777
    • /
    • 2006
  • A novel gene (agiA) required for adventurous gliding motility in Myxococcus xanthus has been identified. Null mutations in this gene caused defects in the gliding movement of isolated cells, suggesting that it belongs to one of the A-motility genes. The isolated agiA mutant cells neither glided nor produced slime trails on agar surface. However, agiA was different from other known A-motility genes in that the agiA mutant created in the $S^-$ mutant background glided in the swarm of cells, since other known A-motility mutants created in the $S^-$ mutant background do not move in the swarm of cells. The agiA mutant was also defective in fruiting body development. Sequence analysis predicted that agiA encodes a 787-amino-acid protein with eight tripeptide repeat motifs.

Operon Required for Fruiting Body Development in Myxococcus xanthus

  • Kim, Do-Hee;Chung, Jin-Woo;Hyun, Hye-Sook;Lee, Cha-Yul;Lee, Kyoung;Cho, Kyung-Yun
    • Journal of Microbiology and Biotechnology
    • /
    • v.19 no.11
    • /
    • pp.1288-1294
    • /
    • 2009
  • We have used mutational analysis to identity four genes, MXAN3553, MXAN3554, MXAN3555, and MXAN3556, constituting an operon that is essential for normal fruiting body development in Myxococcus xanthus. Deletion of MXAN3553, which encoded a hypothetical protein, resulted in delayed fruiting body development. MXAN3554 was predicted to encode a metallopeptidase, and its deletion caused fruiting body formation to fail. Inactivation of MXAN3555, which encoded a putative NtrC-type response regulator, resulted in delayed aggregation and a severe reduction in sporulation. Fruiting bodies also failed to develop with the deletion of MXAN3556, another gene encoding a hypothetical protein.

The effects of succinylacetone on synthesis of protoporphyrin IX and cell growth of Myxococcus xanthus (Myxococcus xanthus의 protoporphyrin IX의 합성과 세포 성장에 대한 succinylacetone의 영향)

  • 이병욱
    • Journal of Life Science
    • /
    • v.13 no.6
    • /
    • pp.814-821
    • /
    • 2003
  • Protoporphyrin IX is an intermediate molecule in the heme biosynthetic pathway. Intra- and extracellular concentrations of protoporphyrin IX in the wild type strain, Myxococcus xanthus DK1622 were measured by reverse phase HPLC. The amount of intracellular protoporphyrin IX continuously increased and reached 6.4 picomoles/mg of protein at the stationary phase. Extracellular protoporphyrin IX began to be detected from the mid-exponential phase. The culture supernatant that was collected in the stationary phase contained approximately 3.0 picomoles of proto-porphyrin IX per mg of protein. Spores formed by nutrient depletion contained about 6.5 picomole protoporphyrin IX/mg of protein. The synthesis of protoporphyrin IX and cell growth were strongly inhibited by addition of succinylacetone to a final concentration of $500\muM$. Succinylacetone, however did not appear to interfere developmental processes. Normal developmental behaviors including aggregation and spore formation was achieved even if succinylacetone was added in a medium. Photolysis among cells grown on a starvation medium supplemented with succinylacetone was also observed. These results indicate that protoporphyrin IX may be important to M. ,xanthus vegetative growth, but not critical to development processes.

LC-MS/MS Profiling-Based Secondary Metabolite Screening of Myxococcus xanthus

  • Kim, Ji-Young;Choi, Jung-Nam;Kim, Pil;Sok, Dai-Eun;Nam, Soo-Wan;Lee, Choong-Hwan
    • Journal of Microbiology and Biotechnology
    • /
    • v.19 no.1
    • /
    • pp.51-54
    • /
    • 2009
  • Myxobacteria, Gram-negative soil bacteria, are a well-known producer of bioactive secondary metabolites. Therefore, this study presents a methodological approach for the high-throughput screening of secondary metabolites from 4 wild-type Myxococcus xanthus strains. First, electrospray ionization mass spectrometry (ESI-MS) was performed using extracellular crude extracts. As a result, 22 metabolite peaks were detected, and the metabolite profiling was then conducted using the m/z value, retention time, and MS/MS fragmentation pattern analyses. Among the peaks, one unknown compound peak was identified as analogous to the myxalamid A, B, and C series. An analysis of the tandem mass spectrometric fragmentation patterns and HR-MS identified myxalamid K as a new compound derived from M. xanthus. In conclusion, LC-MS/MS-based chemical screening of diverse secondary metabolites would appear to be an effective approach for discovering unknown microbial secondary metabolites.

The Regulation of LexA on UV-Induced SOS Response in Myxococcus xanthus Based on Transcriptome Analysis

  • Sheng, Duo-hong;Wang, Ye;Wu, Shu-ge;Duan, Rui-qin;Li, Yue-zhong
    • Journal of Microbiology and Biotechnology
    • /
    • v.31 no.7
    • /
    • pp.912-920
    • /
    • 2021
  • SOS response is a conserved response to DNA damage in prokaryotes and is negatively regulated by LexA protein, which recognizes specifically an "SOS-box" motif present in the promoter region of SOS genes. Myxococcus xanthus DK1622 possesses a lexA gene, and while the deletion of lexA had no significant effect on either bacterial morphology, UV-C resistance, or sporulation, it did delay growth. UV-C radiation resulted in 651 upregulated genes in M. xanthus, including the typical SOS genes lexA, recA, uvrA, recN and so on, mostly enriched in the pathways of DNA replication and repair, secondary metabolism, and signal transduction. The UV-irradiated lexA mutant also showed the induced expression of SOS genes and these SOS genes enriched into a similar pathway profile to that of wild-type strain. Without irradiation treatment, the absence of LexA enhanced the expression of 122 genes that were not enriched in any pathway. Further analysis of the promoter sequence revealed that in the 122 genes, only the promoters of recA2, lexA and an operon composed of three genes (pafB, pafC and cyaA) had SOS box sequence to which the LexA protein is bound directly. These results update our current understanding of SOS response in M. xanthus and show that UV induces more genes involved in secondary metabolism and signal transduction in addition to DNA replication and repair; and while the canonical LexA-dependent regulation on SOS response has shrunk, only 5 SOS genes are directly repressed by LexA.

Genetic and Functional Analyses of the DKxanthene Biosynthetic Gene Cluster from Myxococcus stipitatus DSM 14675

  • Hyun, Hyesook;Lee, Sunjin;Lee, Jong Suk;Cho, Kyungyun
    • Journal of Microbiology and Biotechnology
    • /
    • v.28 no.7
    • /
    • pp.1068-1077
    • /
    • 2018
  • DKxanthenes are a class of yellow secondary metabolites produced by myxobacterial genera Myxococcus and Stigmatella. We identified a putative 49.5 kb DKxanthene biosynthetic gene cluster from Myxococcus stipitatus DSM 14675 by genomic sequence and mutational analyses. The cluster consisted of 15 genes (MYSTI_06004-MYSTI_06018) encoding polyketide synthases, non-ribosomal peptide synthases, and proteins with unknown functions. Disruption of the genes by plasmid insertion resulted in defects in the production of yellow pigments. High-performance liquid chromatography and liquid chromatography-tandem mass spectrometry analyses indicated that the yellow pigments produced by M. stipitatus DSM 14675 might be novel DKxanthene derivatives. M. stipitatus did not require DKxanthenes for the formation of heat-resistant viable spores, unlike Myxococcus xanthus. Furthermore, DKxanthenes showed growth inhibitory activity against the fungi Aspergillus niger, Candida albicans, and Rhizopus stolonifer.