• 제목/요약/키워드: Myocardial reperfusion injury

검색결과 94건 처리시간 0.025초

스트레스성 자극에 의한 항산화효소 유도와 허혈/재관류 심장 보호효과 (Effects of in vivo-stresses on the Activities of the Myocardial Antioxidant Enzymes and the Ischemia-Reperfusion Injury in Rat Hearts)

  • 박종완;김영훈;김명석
    • Toxicological Research
    • /
    • 제11권1호
    • /
    • pp.161-168
    • /
    • 1995
  • It has been found that various stress challenges induce the myocardial antioxidant enzymes and produce an acquisition of the cellular resistance to the ischemic injury in animal hearts. Most of the stresses, however, seem to be guite dangerous to an animal's life. In the present study, therefore, we tried to search for safely applicable stress modalities which could lead to the induction of antioxidant enzymes and the production of myocardial tolerance to the ischemia-reperfusion injury. Male Sprague-Dawley rats (200-250 g) were exposed to various non-fatal stress conditions, i.e., hyperthermia (environmental temperature of $42^{\circ}C$ for 30 min, non-anesthetized animal), iramobilization (60 min), treadmill exercise (20 m/min, 30min), swimming (30 min), and hyperbaric oxyflenation (3 atm, 60 min), once a day for 5 days. The activities of myocardial antioxidant enzymes and the ischemia-reperfusion injury of isolated hearts were evaluated at 24 hr after the last application of the stresses. The activities of antioxidant enzymes, superoxide dismutase (SOD), catalase, glutathione peroxidase, glutathione reductase and glucose-6-phosphate dehydrogenase (G6PD), were assayed in the freshly excised ventricular tissues. The ischemia-reperfusion injury was produced by 20 min-global ischemia followed by 30 min-reperfusion using a Langendorff perfusion system. In swimming and hyperbaric oxygenation groups, the activities of SOD and G6PD increased significantly and in the hyperthermia group, the catalase activity was elevated by 63% compared to the control. The percentile recoveries of cardiac function at 30 min of the post-ischemic reperfusion were 55.4%, 73.4%, and 74.2% in swimming, the hyperbaric oxygenation and the hyperthermia groups, respectively. The values were significantly higher than that of the control (38.6%). In additions, left ventricular end-diastolic pressure and lactate dehydrogenase release were significantly reduced in the stress groups. The results suggest that the antioxidant enzymes in the heart could be induced by the apparently safe in vivo-stresses and this may be involved in the myocardial protection from the ischemia-reperfusion injury.

  • PDF

Methanol Extract of Cassia mimosoides var. nomame Attenuates Myocardial Injury by Inhibition of Apoptosis in a Rat Model of Ischemia-Reperfusion

  • Lim, Sun-Ha;Lee, Jong-Won
    • Preventive Nutrition and Food Science
    • /
    • 제17권3호
    • /
    • pp.177-183
    • /
    • 2012
  • Interruption of blood flow through coronary arteries and its subsequent restoration triggers the generation of a burst of reactive oxygen species (ROS), leading to myocardial cell death. In this study, we determined whether a methanol extract of Cassia mimosoides var. nomame Makino could prevent myocardial ischemia-reperfusion injury. When radical scavenging activity of the extract was measured in vitro using its ${\alpha}$,${\alpha}$-diphenyl-${\beta}$-picrylhydrazyl (DPPH) radical quenching ability, the extract showed an activity slightly lower than that of ascorbic acid. Three days after oral administration of the extract (400 mg/kg/day) to rats, myocardial ischemia/reperfusion injury was generated by 30 min of ligation of the left anterior descending coronary artery (LAD), followed by 3 hr reperfusion. Compared with the vehicle-treated group, administration of the extract significantly reduced infarct size (IS) (ratio of infarct area to area at risk) in the extract-treated group by 28.3%. Reduction in the cellular injury was mediated by attenuation of Bax/Bcl-2 ratio by 33.3%, inhibition of caspase-3 activation from procaspase-3 by 40%, and subsequent reduction in the number of apoptotic cells by 66.3%. These results suggest that the extract attenuates myocardial injury in a rat model of ischemia-reperfusion by scavenging ROS, including free radicals, and consequently blocking apoptotic cascades. Therefore, intake of Cassia mimosoides var. nomame Makino might be beneficial for preventing ischemic myocardial injury.

Chlorpromazine 이 과분극 정지심장의 재관류 손상에 미치는 보호효과 (Protective Effect of Chlorpromazine for the Isolated Rat Heart from Reperfusion Injury)

  • 류한영
    • Journal of Chest Surgery
    • /
    • 제23권1호
    • /
    • pp.9-15
    • /
    • 1990
  • This study was designed to investigate the protective effect of chlorpromazine against the reperfusion injury of myocardium after high potassium cardioplegic arrest. Langendorff`s preparations of rat heart were infused with high potassium cardioplegic solution[St. Thomas Hospital Solution] at 25oC. Chlorpromazine [10-7M] increased the recovery of myocardial contractility[dp/dt], left ventricular pressure[LVP], and coronary flow rate of the reperfused heart. Both in control and experimental groups, the restoration of myocardial activity could not reach to the level of preplegic control. These results suggest that the etiologic factors of the reperfusion injury include the influence of high potassium cardioplegic solution and/or reperfusion itself, and that chlorpromazine protects myocardium from the reperfusion injury.

  • PDF

Naloxone Postconditioning Alleviates Rat Myocardial Ischemia Reperfusion Injury by Inhibiting JNK Activity

  • Xia, Anzhou;Xue, Zhi;Wang, Wei;Zhang, Tan;Wei, Tiantian;Sha, Xingzhi;Ding, Yixun;Zhou, Weidong
    • The Korean Journal of Physiology and Pharmacology
    • /
    • 제18권1호
    • /
    • pp.67-72
    • /
    • 2014
  • To investigate the alteration of c-Jun N-terminal kinase (JNK) activity after myocardial ischemia reperfusion injury (MIRI) and further explore the effect of naloxone postconditioning on MIRI. Forty male Sprague Dawley rats were randomly divided into five groups: sham operation (sham, n=8); ischemia reperfusion (IR, n=8); IR+naloxone 0.5 mg/kg (Nal L, n=8); IR+naloxone 1.0 mg/kg (Nal M, n=8); IR+naloxone 2.0 mg/kg (Nal H, n=8). Pathological changes of myocardial tissue were visualized by HE staining. The expression of p-JNK, and the apoptosis of cardiomyocytes were investigated with Western blotting and the TUNEL assay, respectively. Irregular arrangement and aberrant structure of myocardial fibers, cardiomyocytes with granular or vacuolar degeneration, and inflammatory cells infiltrating the myocardial interstitial regions characterized MIRI in the IR group. Signs of myocardial injury and inflammatory infiltration were less prominent in the Nal-treated groups. The expression of p-JNK in the sham group and in all Nal-treated groups was significantly lower than that in the IR group (p<0.01). The apoptosis index of cardiomyocytes in the IR group was significantly higher than in the sham group (p<0.01). The apoptosis indices of cardiomyocytes in all Nal-treated groups were significantly reduced to 55.4%, 26.2%, and 27.6%, respectively, of the IR group (p<0.01). This study revealed that Naloxone postconditioning before reperfusion inhibits p-JNK expression and decreases cell apoptosis, thus alleviating MIRI.

Effect of gemigliptin on cardiac ischemia/reperfusion and spontaneous hypertensive rat models

  • Nam, Dae-Hwan;Park, Jinsook;Park, Sun-Hyun;Kim, Ki-Suk;Baek, Eun Bok
    • The Korean Journal of Physiology and Pharmacology
    • /
    • 제23권5호
    • /
    • pp.329-334
    • /
    • 2019
  • Diabetes is associated with an increased risk of cardiovascular complications. Dipeptidyl peptidase-4 (DPP-IV) inhibitors are used clinically to reduce high blood glucose levels as an antidiabetic agent. However, the effect of the DPP-IV inhibitor gemigliptin on ischemia/reperfusion (I/R)-induced myocardial injury and hypertension is unknown. In this study, we assessed the effects and mechanisms of gemigliptin in rat models of myocardial I/R injury and spontaneous hypertension. Gemigliptin (20 and 100 mg/kg/d) or vehicle was administered intragastrically to Sprague-Dawley rats for 4 weeks before induction of I/R injury. Gemigliptin exerted a preventive effect on I/R injury by improving hemodynamic function and reducing infarct size compared to the vehicle control group. Moreover, administration of gemigliptin (0.03% and 0.15%) powder in food for 4 weeks reversed hypertrophy and improved diastolic function in spontaneously hypertensive rats. We report here a novel effect of the gemigliptin on I/R injury and hypertension.

In Vivo Protein Transduction: Delivery of PEP-1-SOD1 Fusion Protein into Myocardium Efficiently Protects against Ischemic Insult

  • Zhang, You-en;Wang, Jia-ning;Tang, Jun-ming;Guo, Ling-yun;Yang, Jian-ye;Huang, Yong-zhang;Tan, Yan;Fu, Shou-zhi;Kong, Xia;Zheng, Fei
    • Molecules and Cells
    • /
    • 제27권2호
    • /
    • pp.159-166
    • /
    • 2009
  • Myocardial ischemia-reperfusion injury is a medical problem occurring as damage to the myocardium following blood flow restoration after a critical period of coronary occlusion. Oxygen free radicals (OFR) are implicated in reperfusion injury after myocardial ischemia. The antioxidant enzyme, Cu, Zn-superoxide dismutase (Cu, Zn-SOD, also called SOD1) is one of the major means by which cells counteract the deleterious effects of OFR after ischemia. Recently, we reported that a PEP-1-SOD1 fusion protein was efficiently delivered into cultured cells and isolated rat hearts with ischemia-reperfusion injury. In the present study, we investigated the protective effects of the PEP-1-SOD1 fusion protein after ischemic insult. Immunofluorescecnce analysis revealed that the expressed and purified PEP-1-SOD1 fusion protein injected into rat tail veins was efficiently transduced into the myocardium with its native protein structure intact. When injected into Sprague-Dawley rat tail veins, the PEP-1-SOD1 fusion protein significantly attenuated myocardial ischemia-reperfusion damage; characterized by improving cardiac function of the left ventricle, decreasing infarct size, reducing the level of malondialdehyde (MDA), decreasing the release of creatine kinase (CK) and lactate dehydrogenase (LDH), and relieving cardiomyocyte apoptosis. These results suggest that the biologically active intact forms of PEP-1-SOD1 fusion protein will provide an efficient strategy for therapeutic delivery in various diseases related to SOD1 or to OFR.

MicroRNA-206 Protects against Myocardial Ischaemia-Reperfusion Injury in Rats by Targeting Gadd45β

  • Zhai, Changlin;Qian, Qang;Tang, Guanmin;Han, Bingjiang;Hu, Huilin;Yin, Dong;Pan, Haihua;Zhang, Song
    • Molecules and Cells
    • /
    • 제40권12호
    • /
    • pp.916-924
    • /
    • 2017
  • MicroRNAs are widely involved in the pathogenesis of cardiovascular diseases through regulating gene expression via translational inhibition or degradation of their target mRNAs. Recent studies have indicated a critical role of microRNA-206 in myocardial ischaemia-reperfusion (I/R) injury. However, the function of miR-206 in myocardial I/R injury is currently unclear. The present study was aimed to identify the specific role of miR-206 in myocardial I/R injury and explore the underlying molecular mechanism. Our results revealed that the expression level of miR-206 was significantly decreased both in rat I/R group and H9c2 cells subjected to hypoxia/reoxygenation (H/R) compared with the corresponding control. Overexpression of miR-206 observably decreased infarct size and inhibited the cardiomyocyte apoptosis induced by I/R injury. Furthermore, bioinformatics analysis, luciferase activity and western blot assay proved that $Gadd45{\beta}$ (growth arrest DNA damage-inducible gene $45{\beta}$) was a direct target gene of miR-206. In addition, the expression of pro-apoptotic-related genes, such as p53, Bax and cleaved caspase3, was decreased in association with the down-regulation of $Gadd45{\beta}$. In summary, this study demonstrates that miR-206 could protect against myocardial I/R injury by targeting $Gadd45{\beta}$.

탈명산(奪命散)이 배양심근세포(培養心筋細胞) 및 혈관평골근세포(血管平滑筋細胞)에 미치는 영향(影響) (Effects of Talmyung-san on the Cultured Rat Myocardiac Cell and Vascular Smooth Muscle Cell)

  • 성강경;박세홍
    • 대한한방내과학회지
    • /
    • 제21권1호
    • /
    • pp.46-54
    • /
    • 2000
  • Objectives : Talmyung-san(TMS) has been used for treatment of brain diseases in Chinese traditional medicine. However, little is known about the mechanism by which TMS rescues brain cells from ischemic damages. To elucidate the protective mechanisms of TMS, we execute experiments. Methods : The effects of TMS on ischemia/reperfusion-induced cytotoxicity and generation of nitric oxide(NO) are investigated in primary neonatal myocardial cells and A7rS, aortic smooth muscle cell line. Results : Ischemia/reperfusion itself induces severe myocardial cell death in vitro. However, treatment of the cells with TMS significantly reduces both ischemia/reperfusion-induced myocardial cell death and LDH release. In addition, pretreatment of TMS before reperfusion recovers the lose of beating rates alter ischemia/reperfusion. For a while, the water extract of TMS stimulates myocardial cells to produce NO in a dose dependent manner and it protects the damage of ischemia/reperfusion-induced myocardial cells. Furthermore, the protective effects of the water extract of TMS is mimicked by treatment of sodium nitroprusside, an exogenous NO donor. NG-monomethyl-L-arginine (NGMMA), a specific inhibitor of nitric oxide synthase(NOS), significantly blocks the protective effects of TMS on the cells after ischemia/reperfusion. In addition, on ischemia the water extract of TMS induce NO in A7r5 cell. Conclusions : Taken together, we suggest that the protective effects of TMS against ischemia/reperfusion-induced myocardial damages may be mediated by NO production of myocardial and vascular smooth muscle cell during ischemic condition.

  • PDF

LOXL1-AS1 Aggravates Myocardial Ischemia/Reperfusion Injury Through the miR-761/PTEN Axis

  • Wenhua He;Lili Duan;Li Zhang
    • Korean Circulation Journal
    • /
    • 제53권6호
    • /
    • pp.387-403
    • /
    • 2023
  • Background and Objectives: Myocardial ischemia and reperfusion injury (MIRI) has high morbidity and mortality worldwide. We aimed to explore the role of long noncoding RNA lysyl oxidase like 1 antisense RNA 1 (LOXL1-AS1) in cardiomyocyte pyroptosis. Methods: Hypoxia/reoxygenation (H/R) injury was constructed in human cardiomyocyte (HCM). The level of LOXL1-AS1, miR-761, phosphatase and tensin homolog (PTEN) and pyroptosis-related proteins was monitored by quantitative real-time polymerase chain reaction or western blot. Flow cytometry examined the pyroptosis level. Lactate dehydrogenase (LDH), creatine kinase-MB and cardiac troponin I levels were detected by test kits. Enzyme-linked immunosorbent assay measured the release of inflammatory cytokines. Dual-luciferase assay validated the binding relationship among LOXL1-AS1, miR-761, and PTEN. Finally, ischemia/reperfusion (I/R) animal model was constructed. Hematoxylin and eosin staining assessed morphological changes of myocardial tissue. NOD-like receptor pyrin domain-containing protein 3 (NLRP3) and casepase-1 expression was determined by immunohistochemistry. Results: After H/R treatment, LOXL1-AS1 and PTEN were highly expressed but miR-761 level was suppressed. LOXL1-AS1 inhibition or miR-761 overexpression increased cell viability, blocked the release of LDH and inflammatory cytokines (interleukin [IL]-1β, IL-18), inhibited pyroptosis level, and downregulated pyroptosis-related proteins (ASC, cleaved caspase-1, gasdermin D-N, NLRP3, IL-1β, and IL-18) levels in HCMs. LOXL1-AS1 sponged miR-761 to up-regulate PTEN. Knockdown of miR-761 reversed the effect of LOXL1-AS1 down regulation on H/R induced HCM pyroptosis. LOXL1-AS1 aggravated the MIRI by regulating miR-761/PTEN axis in vivo. Conclusions: LOXL1-AS1 targeted miR-761 to regulate PTEN expression, then enhance cardiomyocyte pyroptosis, providing a new alternative target for the treatment of MIRI.

MCT(medium-chain triglyceride) 및 LCT(long-chain triglyceride) 유제가 백서에서 허혈/재관류 심장기능손상 및 혈소판응집능에 미치는 영향 (Effect of MCT (medium-chain triglyceride) and LCT (long-chain triglyceride) on Myocardial Ischemia/Reperfusion Injury and Platelet Aggregation in Rat)

  • 이수환;정이숙;홍정;김민화;이희주;백은주;왕희정;김명욱;문창현
    • Biomolecules & Therapeutics
    • /
    • 제6권4호
    • /
    • pp.358-363
    • /
    • 1998
  • Intravenous lipid emulsion is used extensively as a major component of parenteral nutrition for patients in the surgical intensive care unit. Abnormal cardiovascular function related to lipid infusion has been reported although conflicting results exist. In the present study, we investigated the effects of intravenous emulsions of long-chain triglyceride (LCT) and medium-chain triglyceride (MCT) on myocardial ischemia/ reperfusion injury and on platelet aggregation in rat. There was no difference between LCT and MCT considering the effects on left ventricular developed pressure (LVDP) and coronary flow rate (CFR) before and after ischemia/reperfusion in isolated rat heart. On the other hand, a difference was found between LCT and MCT with regard to their effects on heart rate (HR) and end diastolic pressure (EDP) after ischemia/reperfusion. After ischemia/reperfusion, HR was significantly (P<0.05) reduced and EDP significantly (P<0.05) inc.eased by LCT (18$\pm$2.0% and 42.8$\pm$8.9%, respectively), but not by MCT Ex vivo platelet aggregation induced by collagen was reduced by LCT infusion, but not by MCT These findings suggest that MCT may have slightly more favorable effect than LCT on the myocardial function after ischemia/reperfusion in rat.

  • PDF