• Title/Summary/Keyword: Myocardial reperfusion

Search Result 160, Processing Time 0.025 seconds

Effects of Prostacyclin [PGI2] on Myocardial Protection in the Isolating Working Heart Model (적출활동심장에서 Prostacyclin [PGI2]의 심근보호효과)

  • Lee, Gil-No;Kim, Gyu-Tae
    • Journal of Chest Surgery
    • /
    • v.20 no.4
    • /
    • pp.643-654
    • /
    • 1987
  • The effect of prostacyclin[PGI, ] on myocardial preservation during global ischemia was studied in the isolating working rabbit heart model. Forty hearts underwent a 15 minute period of retrograde nonworking perfusion with Krebs-Henseleit buffer solution [37*C] and were switched over to the working mode for 15 minutes. After baseline measurement of heart rate, peak aortic pressure, aortic flow, and coronary flow, all hearts were subjected to 60 minutes of ischemic arrest at 10*C induced with St. Thomas Hospital cardioplegic solution: Group I had single dose cardioplegia, Croup II double dose, Croup III oxygenated double dose, and Group IV single dose with PCI, infusion [10ng/min./gm heart weight]. Hearts were then revived with 15 minute period of nonworking reperfusion at normothermia, followed by 30 minutes of working perfusion. Repeat measurements of cardiac function were obtained and expressed as a percent of the preischemic baseline values. Oxygen content of arterial perfusate and coronary effluent was measured by designed time interval. Leakage of creatine kinase was determined during post-ischemic reperfusion period. Finally wet hearts were weighed and placed in 120*C oven for 36 hours for measurement of dry weight. In the PGI, treated group [IV], heart rate increased consistently throughout the period of reperfusion from 100*5.0% [p<0.001] to 107*6.2% [p<0.001]. The percent recovery of aortic flow showed 95*5.7% [p<0.001] at the first 3 minute and full recovery through the subsequent time. Coronary flow was augmented significantly in the 3 minute [96*6.2%, p<0.001] and then sustained above baseline values. Among the Croup I, II, and III, all hemodynamic values were significantly below preischemic levels. PGI2 relatively increased oxygen delivery [1.22*0.19ml/min, p<0.001] and myocardial oxygen consumption [0.90*0.13ml/min, p<0.001] during reperfusion period. Leakage of creatine kinase in the PGI2 group was 9.3*1.58IU/15min [p<0.001]. This was significantly lower than Group I [33.0*2.68 IU/15min]. The water content of PCI2 treated hearts [81*0.9%, p<0.001] was also lower than the other groups.

  • PDF

The Pharmacological Effects of KR-30450 , A Potassium Channel Opener on Coronary Artery Occlusion / Reperfusion-Induced Myocardial Infarction in the Rat (흰쥐에서의 관상동맥 결찰/재관류도 유도된 심근경색에 대한 칼륨통로 개방제 KR-30450의 약리학적 효과)

  • Lee, Jae-Heung;Kwon, Kwang-Il;Shin, Hwa-Sup
    • YAKHAK HOEJI
    • /
    • v.41 no.1
    • /
    • pp.117-125
    • /
    • 1997
  • The pharmacological effects of benzopyran potassium channel openers (lemakalim, KR-30450 and KR-30818) on the occlusion/reperfusion-induced myocardial infarction were investigat ed. In anesthetized rats, subjected to 45-min occlusion of the left anterior descending coronary artery (LAD) followed by 90-min reperfusion, the infarct size was measured by calculating the ratio of infarct zone to area at risk (IZ/AAR) with the Evans blue/TTC technique. Rats were intravenously given vehicle (1% DMSO), lemakalim, KR-30450, and KR-30818 alone or in combination with a selective K$_{ATP}$ blacker glibenclamide, 30 min prior to coronary occlusion. Compared to vehicle, lemakalim (30 ${\mu}$g/kg i.v.), the active enantiomer of cromakalim, had a tendancy to decrease infarct size. KR-30450(30 ${\mu}$g/kg, i.v.). the newly synthetized potassium channel openers (PCOs), caused a reduction of infarct size (from 70${\pm}$4%to 57${\pm}$5%). but KR-30818 (30 ${\mu}$g/kg, i.v.), a metabolite of KR-30450. did not modify infarct size. It seem ed likely that glibenclamide (0.3mg/kg, i.v.), given in combination, reduced the effects of these PCOs, especially KR-30450 (30 ${\mu}$g/kg, i.v.) on the infarct size. These results indicate that. in the coronary occluded rat model of ischemia, lemakalim and KR-30450 may exert cardioprotective activity through a reduction of infarct size, the effect being considered related to the opening of K$_{ATP}$ channel.

  • PDF

The Effect of Temperature of Cardioplegic Soultion on Myocardial Protection from Ischemia - Experimental Study using Isolated Rat Heart Perfusion Technique - (흰쥐의 적출된 심장에서 심정지액의 온도가 심근보호에 미치는 영향)

  • 김용한
    • Journal of Chest Surgery
    • /
    • v.25 no.2
    • /
    • pp.131-136
    • /
    • 1992
  • The effect of temperature of cardioplegic solution on myocardial preservation was studied using isolated rat heart perfusion technique. Twenty Sprague-Dawley rats, weighing 120~140gm, were pretreated with intraperitoneal injection of heparin sodium[300u/kg] and then the hearts were excised after cervical herniation 30 minutes later. The hearts were perfused in isolated working heart apparatus with oxygenated modified Tyrode solution at 37oC. After 10 minutes of non working heart perfusion, the hearts were subjected to arrest for 30 minutes by administration of 5cc cardioplegic solution at the temperature of 4oC [Group I ], 15oC [Group II], 25oC [Group III], 37oC[Group IV]. At the same time, the topical cooling of heart was performed using ice saline. After arrest, the hearts were reperfused by non working heart perfusion for 1 hour with modified Tyrode solution at 37oC. The CPK, GOT and LDH in reperfusate were measured at 5,20,40,60 minutes after start of reperfusion. With the values of those, we compared the effect of temperature of cardioplegic solution on myocardial preservation. The results were as follows; 1. The enzyme values in reperfusate were highest at 5 minute and after then declined. 2. At 5 minutes after reperfusion, the enzyme values in Group I were lower than those in other Groups. These results suggest that the cardioplegic solutions using for cardiac arrest and myocardial protection can be working better at 4oC than at any other temperature.

  • PDF

CircZNF609 Aggravated Myocardial Ischemia Reperfusion Injury via Mediation of miR-214-3p/PTGS2 Axis

  • Wen-Qiang Tang;Feng-Rui Yang;Ke-Min Chen;Huan Yang;Yu Liu;Bo Dou
    • Korean Circulation Journal
    • /
    • v.52 no.9
    • /
    • pp.680-696
    • /
    • 2022
  • Background and Objectives: Circular RNAs were known to play vital role in myocardial ischemia reperfusion injury (MIRI), while the role of CircZNF609 in MIRI remains unclear. This study was aimed to investigate the function of CircZNF609 in MIRI. Methods: Hypoxia/reoxygenation (H/R) model was established to mimic MIRI in vitro. Quantitative polymerase chain reaction was performed to evaluate gene transcripts. Cellular localization of CircZNF609 and miR-214-3p were visualized by fluorescence in situ hybridization. Cell proliferation was determined by CCK-8. TUNEL assay and flow cytometry were applied to detect apoptosis. Lactate dehydrogenase was determined by commercial kit. ROS was detected by DCFH-DA probe. Direct interaction of indicated molecules was determined by RIP and dual luciferase assays. Western blot was used to quantify protein levels. In vivo model was established to further test the function of CircZNF609 in MIRI. Results: CircZNF609 was upregulated in H/R model. Inhibition of CircZNF609 alleviated H/R induced apoptosis, ROS generation, restored cell proliferation in cardiomyocytes and human umbilical vein endothelial cells. Mechanically, CircZNF609 directly sponged miR-214-3p to release PTGS2 expression. Functional rescue experiments showed that miR-214-3p/PTGS2 axis was involved in the function of circZNG609 in H/R model. Furthermore, data in mouse model revealed that knockdown of CircZNF609 significantly reduced the area of myocardial infarction and decreased myocardial cell apoptosis. Conclusions: CircZNF609 aggravated the progression of MIRI via targeting miR-214-3p/PTGS2 axis, which suggested CircZNF609 might act as a vital modulator in MIRI.

Conversion of Myocardial Xanthine Oxidase in Ischemic Heart of Rat (허혈심근 Xanthine Oxidase 의 전환에 관한 연구)

  • 박창권
    • Journal of Chest Surgery
    • /
    • v.21 no.5
    • /
    • pp.803-815
    • /
    • 1988
  • The present experiments were performed to confirm the hypothesis that xanthine oxidase[XOD], as a source and mechanism of oxygen radical production, plays an important role in the genesis of the reperfusion injury of ischemic myocardium. The experimental ischemic-reperfusion injury was induced in isolated, Langendorff preparations of rat hearts by 60 min. Of global ischemia with aortic clamping followed by 20 min. of reperfusion with oxygenated Krebs-Henseleit solution[pH 7.4, 37*C]. The results were as follows: 1. The releases of creatine phosphokinase and a lipid peroxidation product, malondialdehyde[MDA] into the coronary effluent were abruptly increased upon reperfusion of ischemic hearts. The increases of the enzyme and MDA were suppressed significantly in the hearts removed from rats pretreated with allopurinol, a specific XOD inhibitor[20mg/kg, oral, 24 hrs and 2 hrs before study]. This effect of allopurinol was comparable to that of oxygen radical scavengers, superoxide dismutase[5, 000U] and catalase[12, 500 U]. 2. The increased SOD-inhibitable reduction of ferricytochrome C, which was infused to the hearts starting with reperfusion, was significantly suppressed in allopurinol pretreated hearts. 3. Activities of myocardial XOD were compared in the normal control hearts and the ischemic ones. Total enzyme activities were not different in both hearts. However, comparing with the control, the ischemic ones showed higher activity in 0-form and lower activities in D-form and D/O-form. 4. In the ischemic hearts, phenylmethylsulfonyl fluoride, a serine protease inhibitor, prevented significantly the increase of 0-form and the decreases of D and D/O-form, while thiol reagents did not affect the changes of the enzyme. 5. The increase of 0-form and the decreases of D and D/0-form were not significant in both calcium-free perfused and pimozide, a calmodulin inhibitor, treated ischemic hearts. 6. The SOD-inhibitable reduction of ferricytochrome C were suppressed by PMSF and pimozide treatment as well as by calcium-free perfusion. It is suggested from these results that in the ischemic rat myocardium, xanthine oxidase is converted to oxygen radical producing 0-form by calcium, calmodulin-dependent proteolysis and plays a contributing role in the genesis of ischemic-reperfusion injury by producing oxygen free radicals.

  • PDF

Teucrium polium L. Improved Heart Function and Inhibited Myocardial Apoptosis in Isolated Rat Heart Following Ischemia-Reperfusion Injury

  • Mahmoudabady, Maryam;Talebian, Faezeh Sadat;Zabihi, Narges Amel;Rezaee, Seyed Abdolrahim;Niazmand, Saeed
    • Journal of Pharmacopuncture
    • /
    • v.21 no.3
    • /
    • pp.159-167
    • /
    • 2018
  • Objectives: Myocardial reperfusion is the only logical cure for ischemic heart disease. However, ischemic-reperfusion (I/R) injury is one of the underlying factors facilitating and accelerating the apoptosis in the myocardium. This study set to investigate the impact of Teucrium polium (TP) hydro-alcoholic extract on I/R induced apoptosis in the isolated rat heart. Methods: Isolated rat hearts were classified into six groups. The control samples were subjected to 80 min of perfusion with Krebs-Henseleit bicarbonate (KHB) buffer; in control-ischemia group, after primary perfusion (20 min) the hearts were exposed to global ischemia (20 min) and reperfusion (40 min). Pretreated groups were perfused with $500{\mu}M$ of vitamin C and various TP concentrations (0.5, 1, 2 mg/ml) for 20 min, and then the hearts were exposed to ischemia and reperfusion for 20 min and 40 min, respectively. Cardiodynamic parameters including rate pressure product (RPP), heart rate (HR), the maximum up/down rate of left ventricular pressure (${\pm}dp/dt$), left ventricular developed pressure (LVDP), and coronary artery flow (CF) were achieved from Lab Chart software data. The Bax and BCl-2 gene expressions were measured in heart samples. Results: Hearts treated with TP extract and vit C represented a meaningful improvement in cardiac contractile function and CF. The overexpression of Bcl-2, downregulation of Bax, and improvement of apoptotic index (Bax/Bcl-2) were observed in pretreated TP extract and vit C hearts. Conclusion: The TP extract was found to ameliorate the cardiac function in the reperfused myocardium. Also, it can hinder apoptotic pathways causing cardioprotection.

Apple pectin, a dietary fiber, ameliorates myocardial injury by inhibiting apoptosis in a rat model of ischemia/reperfusion

  • Lim, Sun Ha;Kim, Mi Young;Lee, Jongwon
    • Nutrition Research and Practice
    • /
    • v.8 no.4
    • /
    • pp.391-397
    • /
    • 2014
  • BACKGROUND/OBJECTIVE: Myocardial cell death due to occlusion of the coronary arteries leads to myocardial infarction, a subset of coronary heart disease (CHD). Dietary fiber is known to be associated with a reduced risk of CHD, the underlying mechanisms of which were suggested to delay the onset of occlusion by ameliorating risk factors. In this study, we tested a hypothesis that a beneficial role of dietary fiber could arise from protection of myocardial cells against ischemic injury, manifested after occlusion of the arteries. MATERIALS/METHODS: Three days after rats were fed apple pectin (AP) (with 10, 40, 100, and 400 mg/kg/day), myocardial ischemic injury was induced by 30 min-ligation of the left anterior descending coronary artery, followed by 3 hr-reperfusion. The area at risk and infarct area were evaluated using Evans blue dye and 2,3,5-triphenyltetrazolium chloride (TTC) staining, respectively. DNA nicks reflecting the extent of myocardial apoptosis were assessed by TUNEL assay. Levels of cleaved caspase-3, Bcl-2, and Bax were assessed by immunohistochemistry. RESULTS: Supplementation of AP (with 100 and 400 mg/kg/day) resulted in significantly attenuated infarct size (IS) (ratio of infarct area to area at risk) by 21.9 and 22.4%, respectively, in the AP-treated group, compared with that in the control group. This attenuation in IS showed correlation with improvement in biomarkers involved in the apoptotic cascades: reduction of apoptotic cells, inhibition of conversion of procaspase-3 to caspase-3, and increase of Bcl-2/Bax ratio, a determinant of cell fate. CONCLUSIONS: The findings indicate that supplementation of AP results in amelioration of myocardial infarction by inhibition of apoptosis. Thus, the current study suggests that intake of dietary fiber reduces the risk of CHD, not only by blocking steps leading to occlusion, but also by protecting against ischemic injury caused by occlusion of the arteries.

Quantitative Assessment of Myocardial Infarction by In-111 Antimyosin Antibody (In-111-Antimyosin 항체를 이용한 심근경색의 정량적 평가)

  • Lee, Myung-Chul;Lee, Kyung-Han;Choi, Yoon-Ho;Chung, June-Key;Park, Young-Bae;Koh, Chang-Soon;Moon, Dae-Hyuk
    • The Korean Journal of Nuclear Medicine
    • /
    • v.25 no.1
    • /
    • pp.37-45
    • /
    • 1991
  • Infarct size is a major determinant of prognosis after acute myocardial infarction. Up to date, however, clinically available tests to estimate this size have not been sufficiently accurate. Twelve lead electrocardiogram and wall motion abnormality measurement are not quantitative, and creatine phophokinase (CPK) measurement is inaccurate in the presence of reperfusion or right ventricular infarction. Methods have been developed to localize and size acute myocardial infarcts with agents that are selectively sequestered in areas of myocardial damage, but previously used agents have lacked sufficient specificity. Antibodies that bind specifically only to damaged myocardial cells may resolve this problem and provide an accurate method for noninvasively measuring infarct size. We determined the accuracy with which infarcted myocardial mass can be measured using single photon emission computed tomography (SPECT) and radiolabeled antimyosin antibodies. Seven patients with acute myocardial infarction and one stable angina patient were injected with 2 mCi of Indium-111 labeled antimyosin antibodies. Planar image and SPECT was performed 24 hours later. None of the patients had history of prior infarcts, and none had undergone reperfusion techniques prior to the study, which was done within 4 days of the attack. Planar image showed all infarct patients to have postive uptakes in the cardiac region. The location of this uptake correlated to the infarct site as indicated by electrocardiography in most of the cases. The angina patient, however, showed no such abnormal uptake. Infarct size was determined from transverse slices of the SPECT image using a 45% threshold value obtained from a phantom study. Measured infarct size ranged from 40 to 192 gr. There was significant correlation between the infarct size measured by SPECT and that estimated from serial measurements of CPK (r=0.73, p<0.05). These date suggest that acute myocardial infarct size can be accurately measured from SPECT Indium-111 antimyosin imaging. This method may be especially valuable in situations where other methods are unreliable, such as early reperfusion technique, right ventricular infarct or presence of prior infarcts.

  • PDF

Effect of Ursodeoxycholic Acid on Ischemia/Reperfusion Injury in Isolated Rat Heart

  • Lee, Woo-Yong;Han, Suk-Hee;Cho, Tai-Soon;Yoo, Young-Hyo;Lee, Sun-Mee
    • Archives of Pharmacal Research
    • /
    • v.22 no.5
    • /
    • pp.479-484
    • /
    • 1999
  • In this study, the effects of ursodeoxycholic acid (UDCA) on ischemia/reperfusion injury were investigated on isolated heart perfusion model. Hearts were perfused with oxygenated Krebs-Henseleit solution (pH 7.4, $37^{\circ}C$) on a Langendroff apparatus. After equilibration, isolated hearts were treated with UDCA 20 to 160 $\mu$M or vehicle (0.04% DMSO) for 10 min before the onset of ischemia. After global ischemia (30 min), ischemic hearts were reperfused and allowed to recover for 30 min. The physiological (i.e. heart rate, left ventricular developed pressure, coronary flow, double product and time to contracture formation) and biochemical (lactate dehydrogenase; LDH) parameters were evaluated. In vehicle-treated group, time to contracture formation was 21.4 min during ischemia, LVDP was 18.5 mmHg at the endpoint or reperfusion and LDH activity in total reperfusion effluent was 54.0 U/L. Cardioprotective effects of UDCA against ischemia/reperfusion consisted of a reduced TTC $(EC_{25}=97.3{\mu}M)$, reduced LDH release and enhanced recovery of cardiac contractile function during reperfusion. Especially, the treatments of UDCA 80 and $160 {\mu}M $ significantly increased LVDP and reduced LDH release. Our findings suggest that UDCA ameliorates ischemia/reperfusion-induced myocardial damage.

  • PDF

An Ultrastructural Study on the Effect of Exogenous $Ca^{2+}$ Stimulation to Ischemic Myocardium during Post-ischemic Reperfusion (재관류시 외인성 칼슘 자극이 허혈 심근에 미치는 영향에 대한 전자현미경적 연구)

  • Kim, Ho-Dirk;Chun, Sang-Bae;Rah, Bong-Jin
    • Applied Microscopy
    • /
    • v.21 no.1
    • /
    • pp.1-20
    • /
    • 1991
  • The effects of exogenous $Ca^{2+}$ stimulation on the post-ischemic myocardial cells were studied using isolated Langendorff-perfused guinea pig hearts. At the starting point of reperfusion, Tyrode solutions, each containing 2.0mM, 4.0mM and 8.0mM $CaCl_2$ respectively, were administered for 2 minutes apart by descending, ascending, or by combined sequences followed by standard Tyrode solution containing 1.0mM $CaCl_2$. The minutes of global ischemia produced reversible but moderate to severe degree of myocardial ultrastructrual changes including focal destruction of sarcolemma, loss of nuclear matrix, clumping and margination of chromatins, mitochondrial swelling, destruction of mitochondrial cristae, shortening of sarcomeres, focal loss of myofibrils, and separation of cell junctions. In spite of reperfusion, the ultrastructure was more severely damaged and irreversible changes such as intracellular fluid accumulation, contracted sarcomeres, mitochondrial destruction, disruption of sarcolemma, loss of nuclear matrix, and separation of cell junction were observed in a large number of cells. In contrast, Tyrode-perfused $Ca^{2+}$-stimulated myocardial cells showed relatively well preserved ultrastucture, except slight changes including focal mitochondrial swelling, widening of T-tubule, and widening of cell junctions, especially at fasciae adherentes. The post-ischemic $Ca^{2+}$-stimulated reperfused myocardial cells produced focal changes such as mitochondrial destruction, disintegration of sarcolemma, widening of T-tubule, and intracellular fluid accumulation with slight variation in degree of changes by the method of $Ca^{2+}$ administration sequence. However, in a large number of the myocardial cells, chromatins were redistributed relatively evenly in the nuclear matrix, mitochondrial cristae were tightly packed, and a considerable number of intramitochondrial granules and glycogen granules reap-pealed. These results indicate that exogenous $Ca^{2+}$ stimulation in the initial period of reperfusion may be beneficial to salvage or to reduce the post-ischemic myocardium from further deleterious changes, and that the beneficial effects may be derived from the reserves of the function of the intracellular $Ca^{2+}$ regulating organelles and/or from the responsiveness of contractile apparatus to $Ca^{2+}$ stimulation.

  • PDF