• Title/Summary/Keyword: Myocardial ischemia/reperfusion

Search Result 115, Processing Time 0.027 seconds

The Protective Effect of Adenosine Included Cardioplegits in Myocardial Ischemia (심근의 허혈시 아데노신을 함유한 심정지액의 심근보호 효과)

  • 유경종;강면식
    • Journal of Chest Surgery
    • /
    • v.30 no.9
    • /
    • pp.847-853
    • /
    • 1997
  • Although the effects of adenosine on the heart, including the clinical suppression of cardiac arrhythmias, have been recognized for more than half a century, it is only in the last decade that the therapeutic potential of adenosine has been recognized. The objective of this study was to determine if augmentation of myocardial adenosine levels during global ischemia improves functional recovery after reperfusion. We used to modified Langendonf system to evaluate myocardial protective effect. Isolated rat hearts were subjected to 90 minutes of deep hypothermic arrest(15$^{\circ}C$) with modified St. Thomas'Hospital cardioplegic solution used to provide myocardial protection. Myocardial adenosine levels were augmented during ischemia by providing exogenous adenosine in the cardioplegic solution. Two groups of hearts w re studied: (1) control group(n=10) cardioplegia alone; (2) adenosine group(n=10) adenosine(0.75mg/kg/min) added to the cardioplegic solution. Significantly better percent recovery(p<0.01) in hemodynamics(except heart rate) at 60 minutes after reperfusion was evident compared to baseline values in the adenosine group. (systolic no란ic pressure : 78.5$\pm$3.6% vs 66.6$\pm$5.9%, airtic overflow volume : 61.7$\pm$ 11.6% vs 37.2$\pm$ 15.4%, coronary flow volume 77.1$\pm$7.5% vs 57.2$\pm$ 11.1%, and cardiac output : 65.6$\pm$ 11.5% vs 44.2$\pm$ 12.4%). Heart rate was similar in two groups(94.4$\pm$4.8% vs 95.3 $\pm$ 6.8%). Adenosine groups resulted in significantly rapid recovery time of heart beat after reperEusion(p<0.01) (24.5$\pm$7.6 sec. vs 179.0$\pm$ 131.1sec.). In biochemical study, CPK levels(0.1 $\pm$0.3U/L vs 1.4$\pm$0.8U/L) and lactic acid levels(0.08$\pm$0.Immol/L vs 0.34$\pm$0.2 mmol/L) were significantly low in adenosine groups(p<0.01). We concluded that adenosine included cardioplegia have better recovery effects after r perfusion in myocardial ischemia compared to adenosine free cardioplegia.

  • PDF

Prevention of Ischemic Damage in Working Rat Hearts by Calcium Channel Blocker and Calmodulin Inhibitors (흰쥐심장의 허혈손상에 대한 Calcium 통로봉쇄제와 Calmodulin 억제제의 예방효과에 대한 연구)

  • 성시찬
    • Journal of Chest Surgery
    • /
    • v.22 no.6
    • /
    • pp.901-913
    • /
    • 1989
  • This study was investigated under the postulation that activation of intracellular calcium- calmodulin complex during ischemia-reperfusion leads to myocardial injury. The protective effects of calcium channel blocker, diltiazem and calmodulin inhibitors, trifluoperazine, flunarizine and calmidazolium from ischemic injury in rat hearts were observed by using Langendorff apparatus when the antagonists were infused for 3 min in the beginning of ischemia. Thereby, an increase in resting tension developed during 30-min ischemia was analyzed with regard to [1] the degree of cardiac functional recovery following 60-min reperfusion, [2] changes in biochemical variables evoked during 30-min ischemia. The results obtained were as follows: l. In the ischemic group, the resting tension was increased by 4.1*0.2 g at 30-min ischemia. However, the increase in resting tension was markedly reduced not only by pretreatment with diltiazem [3.3 p M] but also with calmodulin inhibitors, trifluoperazine [3.3 p M], flunarizine [0.5 p M] and calmidazolium [0.5 p M], respectively. 2. Recovery of myocardial contractility, +dF /dt and coronary flow were much reduced when evoked by reperfusion in the ischemic group. These variables were significantly improved either by pretreatment with diltiazem or with calmodulin inhibitors. 3. The resting tension increment evoked during ischemia was significantly inversely correlated with the degree of cardiac function recovered during reperfusion. 4. Following 30-min ischemia, the production of malondialdehyde and release of lysosomal enzyme were much increased in association with a decrease in creatine kinase activity. 5. The increases in malondialdehyde production and release of free lysosomal enzyme were suppressed by pretreatment with calmodulin inhibitors as well as diltiazem. Likewise, the decrease of creatine kinase activities was prevented by these calcium antagonists. With these results, it is indicated that a increase in resting tension observed during ischemia has an inverse relationship to the cardiac function recovered following reperfusion, and further, the later may be significantly dependent on the degree of biochemical alterations occurred during ischemia such as decrease in creatine kinase activity, increased production of malondialdehyde and increased release of free lysosomal enzyme. Thus it is concluded that calmodulin plays a pivotal role in the process of ischemic injury.

  • PDF

Effect of Tauroursodeoxycholic Acid on Ischemia/Reperfusion Injury in Isolated Rat Heart (타우로우루소데옥시콜린산이 흰쥐의 적출심장에서 허혈 및 재관류 손상에 미치는 영향)

  • 한석희;이우용;박진혁;이선미
    • Biomolecules & Therapeutics
    • /
    • v.7 no.4
    • /
    • pp.354-361
    • /
    • 1999
  • In this study, the effects of tauroursodeoxycholic acid (TUDCA) on ischemia/ reperfusion injury were investigated on isolated heart perfusion models. Hezrts were perfused with oxygenated Krebs-henseleit solution (pH 7.4, $37^{\cire}C$) on a Langendorff apparatus. After equilibration, isolated hearts were treated with TUDCA 100 and 200 $\mu\textrm{M}$ or vehicle (0.02% DMSO) for 10 min before the onset of ischemia in single treatment group. In 7 day pretreatment group. TUDCA 50, 100 and 200 mg/kg body weight were given orally for 7 days before operation. After global ischemia (30 min), ischemic hearts were reperfused for 30 min. The physiological (i.e. heart rate, left ventricdular developed pressure, coronary flow, double product, time to contracture formation) and biochemical (lactate dehydrogenase; LDH) parameters were evaluated. In vehicle-treated group, time to contracture formation was 810 sec during ischemia, LVDP was 34.0 mmHg at the endpoint of reperfusion and LDH activity in total reperfusion effluent was 34.3 U/L. Single treatment with TUDCA did not change the postischemic recovery of cardiac function, LDH and time to contractur compared with ischemic control group. TUDCA pretreatment showed the tendency to decrease LDH release and to increase time to contracture and coronary flow. Our findings suggest that TUDCA does not ameliorate ischemia/reperfusion-reduced myocardial damage.

  • PDF

Effect of Ursodeoxycholic Acid on Ischemia/Reperfusion Injury in Isolated Rat Heart

  • Lee, Woo-Yong;Lee, Sun-Mee;Cho, Tai-Soon
    • Proceedings of the Korean Society of Applied Pharmacology
    • /
    • 1998.11a
    • /
    • pp.199-199
    • /
    • 1998
  • In this study, the effects of ursodeoxycholic acid (UDCA) on ischemia/reperfusion injury were investigated on retrograded aortic perfusion model. Hearts from Sprague-Dawley rats were perfused with oxygenated Krebs-Henseleit solution (pH 7.4, 37) on a Langendorff apparatus. After equilibration, hearts were treated with ursodeoxycholic acid 10, 20, 40 and 800 M or vehicle (0.04% DMSO) for 10 min before the onset of ischemia. Following 25 min of global ischemia, ischemic hearts were reperfused and allowed to recover for 30 min. The physiological (i.e. heart rate, left ventricular diastolic pressure, coronary flow and time to contracture formation) and biochemical (lactate dehydrogenase, LDH) endpoints were evaluated. In vehicle group, time to contracture formation (TTC) value was 19.5 min during ischemia, LVDP was 20.8 mmHg at the endpoint of reperfusion and LDH activity in reperfusate was 59.7 U/L. Cardioprotective effects of UDCA following ischemia/reperfusion consisted of a reduced TTC (EC$\_$25/ = 16.10 M), reduced LDH release and enhanced recovery of contractile function during reperfusion. Especially, the treatments of UDCA 80 M remarkably increased LVDP (68.1 mmHg) and reduced LDH release (33.2 U/L). Our findings suggest that UDCA ameliorates ischemia/reperfusion-induced myocardial damage, in agreement with physiological and biochemical parameters.

  • PDF

The Effects of Ischemic Postconditioning on Myocardial Function and Nitric Oxide Metabolites Following Ischemia-Reperfusion in Hyperthyroid Rats

  • Zaman, Jalal;Jeddi, Sajjad;Ghasemi, Asghar
    • The Korean Journal of Physiology and Pharmacology
    • /
    • v.18 no.6
    • /
    • pp.481-487
    • /
    • 2014
  • Ischemic postconditioning (IPost) could decrease ischemia-reperfusion (IR) injury. It has not yet reported whether IPost is useful when ischemic heart disease is accompanied with co-morbidities like hyperthyroidism. The aim of this study was to examine the effect of IPost on myocardial IR injury in hyperthyroid male rats. Hyperthyroidism was induced with administration of thyroxine in drinking water (12 mg/L) over a period of 21 days. After thoracotomy, the hearts of control and hyperthyroid rats were perfused in the Langendorff apparatus and subjected to 30 minutes global ischemia, followed by 120 minutes reperfusion; IPost, intermittent early reperfusion, was induced instantly following ischemia. In control rats, IPost significantly improved the left ventricular developed pressure (LVDP) and ${\pm}dp/dt$ during reperfusion (p<0.05); however it had no effect in hyperthyroid rats. In addition, hyperthyroidism significantly increased basal $NO_x$ (nitrate+nitrite) content in serum ($125.5{\pm}5.4{\mu}mol/L$ vs. $102.8{\pm}3.7{\mu}mol/L$; p<0.05) and heart ($34.9{\pm}4.1{\mu}mol/L$ vs. $19.9{\pm}1.94{\mu}mol/L$; p<0.05). In hyperthyroid groups, heart $NO_x$ concentration significantly increased after IR and IPost, whereas in the control groups, heart $NO_x$ were significantly higher after IR and lower after IPost (p<0.05). IPost reduced infarct size (p<0.05) only in control groups. In hyperthyroid group subjected to IPost, aminoguanidine, an inducible nitric oxide (NO) inhibitor, significantly reduced both the infarct size and heart $NO_x$ concentrations. In conclusion, unlike normal rats, IPost cycles following reperfusion does not provide cardioprotection against IR injury in hyperthyroid rats; an effect that may be due to NO overproduction because it is restored by iNOS inhibition.

LOXL1-AS1 Aggravates Myocardial Ischemia/Reperfusion Injury Through the miR-761/PTEN Axis

  • Wenhua He;Lili Duan;Li Zhang
    • Korean Circulation Journal
    • /
    • v.53 no.6
    • /
    • pp.387-403
    • /
    • 2023
  • Background and Objectives: Myocardial ischemia and reperfusion injury (MIRI) has high morbidity and mortality worldwide. We aimed to explore the role of long noncoding RNA lysyl oxidase like 1 antisense RNA 1 (LOXL1-AS1) in cardiomyocyte pyroptosis. Methods: Hypoxia/reoxygenation (H/R) injury was constructed in human cardiomyocyte (HCM). The level of LOXL1-AS1, miR-761, phosphatase and tensin homolog (PTEN) and pyroptosis-related proteins was monitored by quantitative real-time polymerase chain reaction or western blot. Flow cytometry examined the pyroptosis level. Lactate dehydrogenase (LDH), creatine kinase-MB and cardiac troponin I levels were detected by test kits. Enzyme-linked immunosorbent assay measured the release of inflammatory cytokines. Dual-luciferase assay validated the binding relationship among LOXL1-AS1, miR-761, and PTEN. Finally, ischemia/reperfusion (I/R) animal model was constructed. Hematoxylin and eosin staining assessed morphological changes of myocardial tissue. NOD-like receptor pyrin domain-containing protein 3 (NLRP3) and casepase-1 expression was determined by immunohistochemistry. Results: After H/R treatment, LOXL1-AS1 and PTEN were highly expressed but miR-761 level was suppressed. LOXL1-AS1 inhibition or miR-761 overexpression increased cell viability, blocked the release of LDH and inflammatory cytokines (interleukin [IL]-1β, IL-18), inhibited pyroptosis level, and downregulated pyroptosis-related proteins (ASC, cleaved caspase-1, gasdermin D-N, NLRP3, IL-1β, and IL-18) levels in HCMs. LOXL1-AS1 sponged miR-761 to up-regulate PTEN. Knockdown of miR-761 reversed the effect of LOXL1-AS1 down regulation on H/R induced HCM pyroptosis. LOXL1-AS1 aggravated the MIRI by regulating miR-761/PTEN axis in vivo. Conclusions: LOXL1-AS1 targeted miR-761 to regulate PTEN expression, then enhance cardiomyocyte pyroptosis, providing a new alternative target for the treatment of MIRI.

Effect of Rosiglitazone on Myocardial Ischemia-Reperfusion Injury in Rat Heart

  • Ha, Ki-Chan
    • The Korean Journal of Physiology and Pharmacology
    • /
    • v.10 no.4
    • /
    • pp.181-186
    • /
    • 2006
  • This study was undertaken to evaluate whether peroxisome proliferator-activated-receptor-gamma $(PPAR-{\gamma})$ agonist-rosiglitazone (ROSI) induces postischemic functional recovery in Langendorf heart model. Hearts isolated from normal rats were subjected to 20 min of normoxia or 25 min zero-flow ischemia followed by 50 min reperfusion. In this acute protocol, ROSI $(20\;{\mu}g/ml)$ administered 10 min before ischemia had no effect on hemodynamic cardiac function, but had protective effect on lipid peroxidation in in vitro experiments. In chronic protocol in which ROSI was given by daily gavage (4 mg/kg) for three consecutive days, ROSI could not prevent the hemodynamic alteration on cardiac performance, but has protective effect on the activity of superoxide dismutase (SOD). There was no significant difference in the contents of reduced glutathione (GSH) and catalase activity between ischemia-reperfusion (IR) and ROSI treated IR hearts. Although ROSI had no effect on hemodynamic factor, it had effect on antioxidant activity. Our results indicate that ROSI provides partial beneficial effects by inhibiting lipid peroxidation and/or recovering normal level of SOD activity in the ischemic reperfused heart.

Teucrium polium L. Improved Heart Function and Inhibited Myocardial Apoptosis in Isolated Rat Heart Following Ischemia-Reperfusion Injury

  • Mahmoudabady, Maryam;Talebian, Faezeh Sadat;Zabihi, Narges Amel;Rezaee, Seyed Abdolrahim;Niazmand, Saeed
    • Journal of Pharmacopuncture
    • /
    • v.21 no.3
    • /
    • pp.159-167
    • /
    • 2018
  • Objectives: Myocardial reperfusion is the only logical cure for ischemic heart disease. However, ischemic-reperfusion (I/R) injury is one of the underlying factors facilitating and accelerating the apoptosis in the myocardium. This study set to investigate the impact of Teucrium polium (TP) hydro-alcoholic extract on I/R induced apoptosis in the isolated rat heart. Methods: Isolated rat hearts were classified into six groups. The control samples were subjected to 80 min of perfusion with Krebs-Henseleit bicarbonate (KHB) buffer; in control-ischemia group, after primary perfusion (20 min) the hearts were exposed to global ischemia (20 min) and reperfusion (40 min). Pretreated groups were perfused with $500{\mu}M$ of vitamin C and various TP concentrations (0.5, 1, 2 mg/ml) for 20 min, and then the hearts were exposed to ischemia and reperfusion for 20 min and 40 min, respectively. Cardiodynamic parameters including rate pressure product (RPP), heart rate (HR), the maximum up/down rate of left ventricular pressure (${\pm}dp/dt$), left ventricular developed pressure (LVDP), and coronary artery flow (CF) were achieved from Lab Chart software data. The Bax and BCl-2 gene expressions were measured in heart samples. Results: Hearts treated with TP extract and vit C represented a meaningful improvement in cardiac contractile function and CF. The overexpression of Bcl-2, downregulation of Bax, and improvement of apoptotic index (Bax/Bcl-2) were observed in pretreated TP extract and vit C hearts. Conclusion: The TP extract was found to ameliorate the cardiac function in the reperfused myocardium. Also, it can hinder apoptotic pathways causing cardioprotection.

Effect of gemigliptin on cardiac ischemia/reperfusion and spontaneous hypertensive rat models

  • Nam, Dae-Hwan;Park, Jinsook;Park, Sun-Hyun;Kim, Ki-Suk;Baek, Eun Bok
    • The Korean Journal of Physiology and Pharmacology
    • /
    • v.23 no.5
    • /
    • pp.329-334
    • /
    • 2019
  • Diabetes is associated with an increased risk of cardiovascular complications. Dipeptidyl peptidase-4 (DPP-IV) inhibitors are used clinically to reduce high blood glucose levels as an antidiabetic agent. However, the effect of the DPP-IV inhibitor gemigliptin on ischemia/reperfusion (I/R)-induced myocardial injury and hypertension is unknown. In this study, we assessed the effects and mechanisms of gemigliptin in rat models of myocardial I/R injury and spontaneous hypertension. Gemigliptin (20 and 100 mg/kg/d) or vehicle was administered intragastrically to Sprague-Dawley rats for 4 weeks before induction of I/R injury. Gemigliptin exerted a preventive effect on I/R injury by improving hemodynamic function and reducing infarct size compared to the vehicle control group. Moreover, administration of gemigliptin (0.03% and 0.15%) powder in food for 4 weeks reversed hypertrophy and improved diastolic function in spontaneously hypertensive rats. We report here a novel effect of the gemigliptin on I/R injury and hypertension.

Myocardial Protection by Recombinant Soluble P-selectin Glyco-protein Ligand-1: Suppression of Neutrophil and Platelet Interaction Following Ischemia and Reperfusion

  • Ham, Sang-Soo;Jang, Yoon-Young;Song, Jin-Ho;Lee, Hyang-Mi;Kim, Kwang-Joon;Hong, Jun-Sik;Shin, Yong-Kyoo
    • The Korean Journal of Physiology and Pharmacology
    • /
    • v.4 no.6
    • /
    • pp.515-523
    • /
    • 2000
  • Polymorphonuclear leukocytes (PMNs) play an important role in myocardial ischemia/reperfusion (MI/R) injury. Moreover, platelets are also important blood cells that can aggravate myocardial ischemic injury. This study was designed to test the effects of PMNs and platelets separately and together in provoking cardiac dysfunction in isolated perfused rat hearts following ischemia and reperfusion. Additional control rat hearts were perfused with $75{\times}10^6$ PMNs, with $75{\times}10^6$ platelets, or with $75{\times}10^6\;PMNs+75{\times}10^6$ platelets over a five minute perfusion followed by a 75 min observation period. No significant reduction in coronary flow (CF), left ventricular developed pressure (LVDP), or the first derivative of LVDP (dP/dt max) was observed at the end of the observation period in any non-ischemic group. Similarly, global ischemia (I) for 20 min followed by 45 minutes of reperfusion (R) produced no sustained effects on the final recovery of any of these parameters in any group of hearts perfused in the absence of blood cells. However, I/R hearts perfused with either PMNs or platelets alone exhibited decreases in these variables of $5{\sim}10%$ (p<0.05 from control). Furthermore, I/R hearts perfused with both PMNs and platelets exhibited decreases of 50 to 60% in all measurements of cardiac function (p<0.01). These dual cell perfused I/R hearts also exhibited marked increases in cardiac myeloperoxidase (MPO) activity indicating a significant PMN infiltration, and enhanced P-selectin expression on the coronary microvascular endothelium. All cardiaodynamic effects as well as PMN accumulation and P-selectin expression were markedly attenuated by a recombinant soluble PSGL-1 which inhibits selectin mediated cell adhesion. These results provide evidence that platelets and PMNs act synergistically in provoking post-reperfusion cardiac dysfunction, and that this may be largely due to cell to cell interactions mediated by P-selectin. These results also demonstrate that a recombinant soluble PSGL-1 reduces myocardial reperfusion injury by platelet and PMNs interaction.

  • PDF