• Title/Summary/Keyword: Myocardial injury

Search Result 207, Processing Time 0.021 seconds

Peiminine inhibits myocardial injury and fibrosis after myocardial infarction in rats by regulating mitogen-activated protein kinase pathway

  • Chen, Peng;Zhou, Dengming;Liu, Yongsheng;Wang, Ping;Wang, Weina
    • The Korean Journal of Physiology and Pharmacology
    • /
    • v.26 no.2
    • /
    • pp.87-94
    • /
    • 2022
  • Myocardial infarction promotes cardiac remodeling and myocardial fibrosis, thus leading to cardiac dysfunction or heart failure. Peiminine has been regarded as a traditional anti-fibrotic Chinese medicine in pulmonary fibrosis. However, the role of peiminine in myocardial infarction-induced myocardial injury and fibrosis remained elusive. Firstly, rat model of myocardial infarction was established using ligation of the left coronary artery, which were then intraperitoneally injected with 2 or 5 mg/kg peiminine once a day for 4 weeks. Echocardiography and haemodynamic evaluation results showed that peiminine treatment reduced left ventricular end-diastolic pressure, and enhanced maximum rate of increase/decrease of left ventricle pressure (± dP/dt max) and left ventricular systolic pressure, which ameliorate the cardiac function. Secondly, myocardial infarction-induced myocardial injury and infarct size were also attenuated by peiminine. Moreover, peiminine inhibited myocardial infarction-induced increase of interleukin (IL)-1β, IL-6 and tumor necrosis factor-α production, as well as the myocardial cell apoptosis, in the rats. Thirdly, peiminine also decreased the myocardial fibrosis related protein expression including collagen I and collagen III. Lastly, peiminine reduced the expression of p38 and phosphorylation of extracellular signal-regulated kinase 1/2 in rat model of myocardial infarction. In conclusion, peiminine has a cardioprotective effect against myocardial infarction-induced myocardial injury and fibrosis, which can be attributed to the inactivation of mitogen-activated protein kinase pathway.

Effects of Trauma-Related Shock on Myocardial Function in the Early Period Using Transthoracic Echocardiography

  • Ma, Dae Sung
    • Journal of Trauma and Injury
    • /
    • v.34 no.2
    • /
    • pp.119-125
    • /
    • 2021
  • Purpose: The present study aimed to analyze the effect of trauma-related shock on myocardial function in the early stages of trauma through transthoracic echocardiography (TTE) findings. Methods: We performed a retrospective review and analysis of the medical records of patients aged ≥18 years who were evaluated by TTE within 2 days of admission for trauma-related shock (n=72). Patients were selected from a group of 739 patients admitted with trauma-related shock between January 2014 and December 2016. Results: The incidence rate of myocardial dysfunction in the left ventricle (LV) was 6.8% (5/72), with rates of 7.7% (4/52) in the thoracic injury group and 5.0% (1/20) in the non-thoracic injury group. In the diastolic function of LV, relaxation abnormality was present in 55.8% (29/52) of patients in the thoracic injury group and 50% (10/20) of patients in the non-thoracic injury group. Conclusions: This study may suggest that traumatic shock without thoracic injury may influence myocardial function in the early stages after trauma. Therefore, evaluation of myocardial function may be needed for patients experiencing shock after trauma, regardless of the presence of thoracic injury.

Radiomics of Non-Contrast-Enhanced T1 Mapping: Diagnostic and Predictive Performance for Myocardial Injury in Acute ST-Segment-Elevation Myocardial Infarction

  • Quanmei Ma;Yue Ma;Tongtong Yu;Zhaoqing Sun;Yang Hou
    • Korean Journal of Radiology
    • /
    • v.22 no.4
    • /
    • pp.535-546
    • /
    • 2021
  • Objective: To evaluate the feasibility of texture analysis on non-contrast-enhanced T1 maps of cardiac magnetic resonance (CMR) imaging for the diagnosis of myocardial injury in acute myocardial infarction (MI). Materials and Methods: This study included 68 patients (57 males and 11 females; mean age, 55.7 ± 10.5 years) with acute ST-segment-elevation MI who had undergone 3T CMR after a percutaneous coronary intervention. Forty patients of them also underwent a 6-month follow-up CMR. The CMR protocol included T2-weighted imaging, T1 mapping, rest first-pass perfusion, and late gadolinium enhancement. Radiomics features were extracted from the T1 maps using open-source software. Radiomics signatures were constructed with the selected strongest features to evaluate the myocardial injury severity and predict the recovery of left ventricular (LV) longitudinal systolic myocardial contractility. Results: A total of 1088 segments of the acute CMR images were analyzed; 103 (9.5%) segments showed microvascular obstruction (MVO), and 557 (51.2%) segments showed MI. A total of 640 segments were included in the 6-month follow-up analysis, of which 160 (25.0%) segments showed favorable recovery of LV longitudinal systolic myocardial contractility. Combined radiomics signature and T1 values resulted in a higher diagnostic performance for MVO compared to T1 values alone (area under the curve [AUC] in the training set; 0.88, 0.72, p = 0.031: AUC in the test set; 0.86, 0.71, p = 0.002). Combined radiomics signature and T1 values also provided a higher predictive value for LV longitudinal systolic myocardial contractility recovery compared to T1 values (AUC in the training set; 0.76, 0.55, p < 0.001: AUC in the test set; 0.77, 0.60, p < 0.001). Conclusion: The combination of radiomics of non-contrast-enhanced T1 mapping and T1 values could provide higher diagnostic accuracy for MVO. Radiomics also provides incremental value in the prediction of LV longitudinal systolic myocardial contractility at six months.

Dendropanax morbifera Extract Protects Cardiomyocytes against Hypoxia/Reoxygenation Injury by Inhibition of Reactive Oxygen Species Generation and Calcium Perturbation

  • Lim, Leejin;Ju, Sujin;Song, Heesang
    • Natural Product Sciences
    • /
    • v.25 no.2
    • /
    • pp.136-142
    • /
    • 2019
  • Ischemia/reperfusion-induced myocardial injury is the main cause of acute myocardial infarction. Dendropanax morbifera $L{\acute{e}}veille$ has been used in traditional medicines for the treatment of various diseases such as headache, infectious diseases, and general debility. However, the effect of extract from D. morbifera (EDM) on myocardial ischemic injury is still unknown. In this study, the effects of EDM on neonatal rat cardiomyocytes with hypoxia/reoxygenation (H/R) injury were investigated. The viability of cardiomyocytes with H (30 min)/R (1 h) decreased; however, treatment with EDM significantly inhibited H/R injury-induced cardiomyocyte death. Further, we observed that reactive oxygen species (ROS) generation and intracellular calcium concentration ($Ca^{2+}{_i}$) were significantly reduced in EDM-treated cardiomyocytes compared with that in H/R-injured positive control. In addition, western blotting results showed that EDM attenuated abnormal changes of RyR2 and SERCA2a genes in hypoxic cardiomyocytes. These results suggest that EDM ameliorates ROS generation and $Ca^{2+}{_i}$ homeostasis to prevent dysregulation of calcium regulatory proteins in the heart, thereby exerting cardioprotective effects and reducing hypoxia-induced cardiomyocyte damage, which verifies the potential use of EDM as a new therapeutic agent for the treatment of myocardial ischemic injury.

Methanol Extract of Cassia mimosoides var. nomame Attenuates Myocardial Injury by Inhibition of Apoptosis in a Rat Model of Ischemia-Reperfusion

  • Lim, Sun-Ha;Lee, Jong-Won
    • Preventive Nutrition and Food Science
    • /
    • v.17 no.3
    • /
    • pp.177-183
    • /
    • 2012
  • Interruption of blood flow through coronary arteries and its subsequent restoration triggers the generation of a burst of reactive oxygen species (ROS), leading to myocardial cell death. In this study, we determined whether a methanol extract of Cassia mimosoides var. nomame Makino could prevent myocardial ischemia-reperfusion injury. When radical scavenging activity of the extract was measured in vitro using its ${\alpha}$,${\alpha}$-diphenyl-${\beta}$-picrylhydrazyl (DPPH) radical quenching ability, the extract showed an activity slightly lower than that of ascorbic acid. Three days after oral administration of the extract (400 mg/kg/day) to rats, myocardial ischemia/reperfusion injury was generated by 30 min of ligation of the left anterior descending coronary artery (LAD), followed by 3 hr reperfusion. Compared with the vehicle-treated group, administration of the extract significantly reduced infarct size (IS) (ratio of infarct area to area at risk) in the extract-treated group by 28.3%. Reduction in the cellular injury was mediated by attenuation of Bax/Bcl-2 ratio by 33.3%, inhibition of caspase-3 activation from procaspase-3 by 40%, and subsequent reduction in the number of apoptotic cells by 66.3%. These results suggest that the extract attenuates myocardial injury in a rat model of ischemia-reperfusion by scavenging ROS, including free radicals, and consequently blocking apoptotic cascades. Therefore, intake of Cassia mimosoides var. nomame Makino might be beneficial for preventing ischemic myocardial injury.

Neogambogic acid relieves myocardial injury induced by sepsis via p38 MAPK/NF-κB pathway

  • Fu, Wei;Fang, Xiaowei;Wu, Lidong;Hu, Weijuan;Yang, Tao
    • The Korean Journal of Physiology and Pharmacology
    • /
    • v.26 no.6
    • /
    • pp.511-518
    • /
    • 2022
  • Sepsis-associated myocardial injury, an invertible myocardial depression, is a common complication of sepsis. Neogambogic acid is an active compound in garcinia and exerts anthelmintic, anti-inflammatory, and detoxification properties. The role of neogambogic acid in sepsis-associated myocardial injury was assessed. Firstly, mice were pretreated with neogambogic acid and then subjected to lipopolysaccharide treatment to induce sepsis. Results showed that lipopolysaccharide treatment induced up-regulation of biomarkers involved in cardiac injury, including lactate dehydrogenase (LDH), creatine kinase-MB (CK-MB), and troponin I (cTnI). However, pretreatment with neogambogic acid reduced levels of LDH, CK-MB, and cTnI, and ameliorated histopathological changes in the heart tissues of septic mice. Secondly, neogambogic acid also improved cardiac function in septic mice through reduction in left ventricular end-diastolic pressure, and enhancement of ejection fraction, fractional shortening, and left ventricular systolic mean pressure. Moreover, neogambogic acid suppressed cardiac apoptosis and inflammation in septic mice and reduced cardiac fibrosis. Lastly, protein expression of p-p38, p-JNK, and p-NF-κB in septic mice was decreased by neogambogic acid. In conclusion, neogambogic acid exerted anti-apoptotic, anti-fibrotic, and anti-inflammatory effects in septic mice through the inactivation of MAPK/NF-κB pathway.

Effects of in vivo-stresses on the Activities of the Myocardial Antioxidant Enzymes and the Ischemia-Reperfusion Injury in Rat Hearts (스트레스성 자극에 의한 항산화효소 유도와 허혈/재관류 심장 보호효과)

  • 박종완;김영훈;김명석
    • Toxicological Research
    • /
    • v.11 no.1
    • /
    • pp.161-168
    • /
    • 1995
  • It has been found that various stress challenges induce the myocardial antioxidant enzymes and produce an acquisition of the cellular resistance to the ischemic injury in animal hearts. Most of the stresses, however, seem to be guite dangerous to an animal's life. In the present study, therefore, we tried to search for safely applicable stress modalities which could lead to the induction of antioxidant enzymes and the production of myocardial tolerance to the ischemia-reperfusion injury. Male Sprague-Dawley rats (200-250 g) were exposed to various non-fatal stress conditions, i.e., hyperthermia (environmental temperature of $42^{\circ}C$ for 30 min, non-anesthetized animal), iramobilization (60 min), treadmill exercise (20 m/min, 30min), swimming (30 min), and hyperbaric oxyflenation (3 atm, 60 min), once a day for 5 days. The activities of myocardial antioxidant enzymes and the ischemia-reperfusion injury of isolated hearts were evaluated at 24 hr after the last application of the stresses. The activities of antioxidant enzymes, superoxide dismutase (SOD), catalase, glutathione peroxidase, glutathione reductase and glucose-6-phosphate dehydrogenase (G6PD), were assayed in the freshly excised ventricular tissues. The ischemia-reperfusion injury was produced by 20 min-global ischemia followed by 30 min-reperfusion using a Langendorff perfusion system. In swimming and hyperbaric oxygenation groups, the activities of SOD and G6PD increased significantly and in the hyperthermia group, the catalase activity was elevated by 63% compared to the control. The percentile recoveries of cardiac function at 30 min of the post-ischemic reperfusion were 55.4%, 73.4%, and 74.2% in swimming, the hyperbaric oxygenation and the hyperthermia groups, respectively. The values were significantly higher than that of the control (38.6%). In additions, left ventricular end-diastolic pressure and lactate dehydrogenase release were significantly reduced in the stress groups. The results suggest that the antioxidant enzymes in the heart could be induced by the apparently safe in vivo-stresses and this may be involved in the myocardial protection from the ischemia-reperfusion injury.

  • PDF

D-Limonene mitigate myocardial injury in rats through MAPK/ERK/NF-κB pathway inhibition

  • Younis, Nancy Safwat
    • The Korean Journal of Physiology and Pharmacology
    • /
    • v.24 no.3
    • /
    • pp.259-266
    • /
    • 2020
  • Cardiovascular diseases are the primary reason of mortality, among which myocardial infarction (MI) is the most dominant and prevalent. This study was considered to examine D-Limonene protective action against isoproterenol (ISO) induced MI. Wister male rats were dispersed into four groups. Normal and D-Limonene control group in which rats administered saline or D-Limonene. ISO control animals were administered saline for 21 days then challenged with ISO (85 mg/kg, subcutaneously) on 20th and 21st day for MI induction. D-Limonene pretreated group in which animals were pretreated with D-Limonene 50 mg/kg orally for 21 days then administered ISO on 20th and 21st day. MI prompted variations were assessed by myocardial infarction area determination, blood pressure (BP) alterations, cardiac injury biomarkers and inflammatory mediators measurements. For more depth investigation, both the apoptotic status was evaluated via measuring mRNA expression of Bcl-2 and Bax as well as mitogen-activated protein kinase-extracellular signal-regulated kinase (MAPK-ERK) signal transduction were investigated via Western blotting. MI group revealed significant infarcted area, blood pressure alterations, myocardial injury enzymes intensification together with inflammatory cytokines amplification. MI was associated with activation of MAPK-ERK signal pathway and apoptotic status within the myocardium. On the other hand, pretreated with D-Limonene demonstrated deterred infracted area, reduced myocardial enzymes, improved BP indices, lessened inflammatory levels. Furthermore, D-Limonene pretreatment caused a decline in MAPK proteins pathway and Bax relative mRNA expression, while intensifying Bcl-2 mRNA expression promoting that D-Limonene may constrain MI induced myocardial apoptosis. D-Limonene mitigated MI injury through MAPK/NF-κB pathway inhibition and anti-apoptotic effect.

Apple pectin, a dietary fiber, ameliorates myocardial injury by inhibiting apoptosis in a rat model of ischemia/reperfusion

  • Lim, Sun Ha;Kim, Mi Young;Lee, Jongwon
    • Nutrition Research and Practice
    • /
    • v.8 no.4
    • /
    • pp.391-397
    • /
    • 2014
  • BACKGROUND/OBJECTIVE: Myocardial cell death due to occlusion of the coronary arteries leads to myocardial infarction, a subset of coronary heart disease (CHD). Dietary fiber is known to be associated with a reduced risk of CHD, the underlying mechanisms of which were suggested to delay the onset of occlusion by ameliorating risk factors. In this study, we tested a hypothesis that a beneficial role of dietary fiber could arise from protection of myocardial cells against ischemic injury, manifested after occlusion of the arteries. MATERIALS/METHODS: Three days after rats were fed apple pectin (AP) (with 10, 40, 100, and 400 mg/kg/day), myocardial ischemic injury was induced by 30 min-ligation of the left anterior descending coronary artery, followed by 3 hr-reperfusion. The area at risk and infarct area were evaluated using Evans blue dye and 2,3,5-triphenyltetrazolium chloride (TTC) staining, respectively. DNA nicks reflecting the extent of myocardial apoptosis were assessed by TUNEL assay. Levels of cleaved caspase-3, Bcl-2, and Bax were assessed by immunohistochemistry. RESULTS: Supplementation of AP (with 100 and 400 mg/kg/day) resulted in significantly attenuated infarct size (IS) (ratio of infarct area to area at risk) by 21.9 and 22.4%, respectively, in the AP-treated group, compared with that in the control group. This attenuation in IS showed correlation with improvement in biomarkers involved in the apoptotic cascades: reduction of apoptotic cells, inhibition of conversion of procaspase-3 to caspase-3, and increase of Bcl-2/Bax ratio, a determinant of cell fate. CONCLUSIONS: The findings indicate that supplementation of AP results in amelioration of myocardial infarction by inhibition of apoptosis. Thus, the current study suggests that intake of dietary fiber reduces the risk of CHD, not only by blocking steps leading to occlusion, but also by protecting against ischemic injury caused by occlusion of the arteries.

MicroRNA-206 Protects against Myocardial Ischaemia-Reperfusion Injury in Rats by Targeting Gadd45β

  • Zhai, Changlin;Qian, Qang;Tang, Guanmin;Han, Bingjiang;Hu, Huilin;Yin, Dong;Pan, Haihua;Zhang, Song
    • Molecules and Cells
    • /
    • v.40 no.12
    • /
    • pp.916-924
    • /
    • 2017
  • MicroRNAs are widely involved in the pathogenesis of cardiovascular diseases through regulating gene expression via translational inhibition or degradation of their target mRNAs. Recent studies have indicated a critical role of microRNA-206 in myocardial ischaemia-reperfusion (I/R) injury. However, the function of miR-206 in myocardial I/R injury is currently unclear. The present study was aimed to identify the specific role of miR-206 in myocardial I/R injury and explore the underlying molecular mechanism. Our results revealed that the expression level of miR-206 was significantly decreased both in rat I/R group and H9c2 cells subjected to hypoxia/reoxygenation (H/R) compared with the corresponding control. Overexpression of miR-206 observably decreased infarct size and inhibited the cardiomyocyte apoptosis induced by I/R injury. Furthermore, bioinformatics analysis, luciferase activity and western blot assay proved that $Gadd45{\beta}$ (growth arrest DNA damage-inducible gene $45{\beta}$) was a direct target gene of miR-206. In addition, the expression of pro-apoptotic-related genes, such as p53, Bax and cleaved caspase3, was decreased in association with the down-regulation of $Gadd45{\beta}$. In summary, this study demonstrates that miR-206 could protect against myocardial I/R injury by targeting $Gadd45{\beta}$.