• 제목/요약/키워드: Myoblasts

검색결과 146건 처리시간 0.025초

Influence of Chicken Embryo Extract on Protein Synthesis of Chicken Embryo Myoblasts Depends on Cell Density

  • Kita, K.;Hiramatsu, K.;Okumura, Jun-ichi
    • Asian-Australasian Journal of Animal Sciences
    • /
    • 제11권6호
    • /
    • pp.713-717
    • /
    • 1998
  • The synergistic effect of fetal calf serum (FCS) and chicken embryo extract (CEE) on protein synthesis of chicken embryo myoblasts was examined. Myoblasts were derived from chicken embryo cultured for 14 days by trypsin digestion and cultured in 5% $CO^2/95%$ air at $37^{\circ}C$. When myoblasts were cultured at the low level of cell density (20-50% of well), CEE enhanced the ability of FCS to stimulate protein synthesis of myoblasts. However, there was no significant effect of CEE to stimulate protein synthesis of myoblasts cultured at high level of cell density (100% of well).

Alteration of mitochondrial DNA content modulates antioxidant enzyme expressions and oxidative stress in myoblasts

  • Min, Kyung-Ho;Lee, Wan
    • The Korean Journal of Physiology and Pharmacology
    • /
    • 제23권6호
    • /
    • pp.519-528
    • /
    • 2019
  • Mitochondrial dysfunction is closely associated with reactive oxygen species (ROS) generation and oxidative stress in cells. On the other hand, modulation of the cellular antioxidant defense system by changes in the mitochondrial DNA (mtDNA) content is largely unknown. To determine the relationship between the cellular mtDNA content and defense system against oxidative stress, this study examined a set of myoblasts containing a depleted or reverted mtDNA content. A change in the cellular mtDNA content modulated the expression of antioxidant enzymes in myoblasts. In particular, the expression and activity of glutathione peroxidase (GPx) and catalase were inversely correlated with the mtDNA content in myoblasts. The depletion of mtDNA decreased both the reduced glutathione (GSH) and oxidized glutathione (GSSG) slightly, whereas the cellular redox status, as assessed by the GSH/GSSG ratio, was similar to that of the control. Interestingly, the steady-state level of the intracellular ROS, which depends on the reciprocal actions between ROS generation and detoxification, was reduced significantly and the lethality induced by $H_2O_2$ was alleviated by mtDNA depletion in myoblasts. Therefore, these results suggest that the ROS homeostasis and antioxidant enzymes are modulated by the cellular mtDNA content and that the increased expression and activity of GPx and catalase through the depletion of mtDNA are closely associated with an alleviation of the oxidative stress in myoblasts.

培養 鷄胚 筋原細胞로부터 분비된 細胞融合 촉진 물질에 관한 연구 (On the Possible Fusion-Promoting Factor Secreted from Cultured Myoblasts)

  • Park, Hye-Gyeong;Park, Young-Chul;Lee, Chung-Choo;Ha, Doo-Bong
    • 한국동물학회지
    • /
    • 제29권4호
    • /
    • pp.294-306
    • /
    • 1986
  • 鷄胚 筋原細胞를 배양하면서 筋原細胞로부터 培養液으로 방출되는 물질을 분석함으로써 筋原細胞가 細胞融合 촉진물질을 분비하는지의 여부를 조사하였다. 근원세포의 배양에 한번 쓰인 배양액(muscle-conditioned medium, MCM)은 세포 융합 촉진효과를 가지고 있는 것으로 보아 근원세포로부터 세포용합 촉진물질이 배양액 내로 방출되는 것으로 보인다. 이 MCM의 단백질을 분석한 결과 분자량 약 175,000인 단백질이 배양액 내에서 분자량 약 145,000인 단백질로 분해되고, 이 분해된 단백질이 세포 융합 촉진 효과를 나타내는 것으로 생각된다.

  • PDF

도담탕(導痰湯)이 $C_{2}C_{12}$세포주로부터 myostatin발현에 의한 심근에 미치는 영향 (Effect of Differentiation for Mouse Myoblast $C_{2}C_{12}$ Cells against Myostatin expression from Dodamtang)

  • 이유승;신유정;박종혁;김승모;백경민;박치상
    • 대한한방내과학회지
    • /
    • 제29권1호
    • /
    • pp.243-257
    • /
    • 2008
  • Myostatin, a negative regulator of myogenesis, is shown to function by controlling the proliferation of myoblasts. In this study we show that myostatin is an inhibitor of myoblast differentiation and that this inhibition is mediated through Smad 3. To determine MyoD expression by Dodamtang treatment, we compared the expression pattern of $C_{2}C_{12}$ mouse myoblasts that constitutively express myostatin with control cells. In vitro, increasing concentrations of Dodamtang reversibly prevented the myogenic blockage of myoblasts by myostatin expression. ELISA assay, Western and confocal analysis indicated that treatment of Dodamtang to the low serum culture media increased the levels of MyoD leading to the inhibition of myogenic differentiation by myostatin. The stable transfection of $C_{2}C_{12}$ myoblasts with myostatin expressing constructs did rescue MyoD-induced myogenic differentiation. Consistent with this, the treatment of Dodamtang rescued the expression of a MyoD in $C_{2}C_{12}$ myoblasts treated with myostatin. Taken together, these results suggest that induction of MyoD by Dodamtang inhibits myostatin activity and expression via SMAD3 resulting in the rescue of the myoblasts to differentiate into myotubes. Thus we propose that myostatin action by Dodamtang plays a critical role in myogenic differentiation and that the muscular hyperplasia and hypertrophy seen in animals that blockage of functional myostatin is because of deregulated proliferation and differentiation of myoblasts.

  • PDF

培養 鷄胚 筋原細胞의 融合에 미치는 鷄胚 抽出液 分劃의 영향 (The Effects of Fractions of Chick Embryo Extract on the Fusion of Cultured Chick Embryonic Myoblasts)

  • Ha, Doo-Bong;Lee, Chung-Choo;Park, Young-Chul;Lim, Woon-Ki;Yoo, Byoung-Je
    • 한국동물학회지
    • /
    • 제28권3호
    • /
    • pp.179-193
    • /
    • 1985
  • 鷄胚의 筋原細胞의 증식과 融合에 미치는 계배 抽出液의 영향을 조사하였다. 1. 배양액내의 계배 추출액의 농도가 높을수록 근원세포의 증식은 촉진되었으며, 반면에 근원세포 융합은 지연되었다. 2. 계배 추출액의 단백질을 Sephadex G-75로 分劃하고, 각 분획을 근원세포의 배양액에 첨가한 결과 分子量 40,000과 22,000 dalton 사이의 분획이 근원세포의 증식과 융합을 촉진시켰다. 3. 계배 추출액의 단백질을 ammonium sulfate로 분획시켜 각 분획을 근원세포의 배양액에 첨가한 결과 70% 이상 포화 용액에서 침전하는 분획이 근원세포의 증식과 융합을 현저히 증가시켰다. 이 유효 분획을 Sephadex G-75로 재차 분획하여 각 분획의 효과를 조사한 결과 근원세포의 증식과 융합을 촉진시키는 분획이 계배 추출액을 Sephadex G-75로 분획하여 얻은 유효 분획과 거의 동일한 효과를 나타내었다.

  • PDF

The Expression and the Subcellular Localization of Regulatory Subunits of Class IA Phosphoinositide 3-Kinase in L6 Skeletal Muscle Cell

  • Woo Joo-Hong;Lim Jeong-Soon;Kim Hye-Sun
    • 대한의생명과학회지
    • /
    • 제12권3호
    • /
    • pp.201-208
    • /
    • 2006
  • PI3-kinase activity through p85, the regulatory subunit of class IA PI3-kinase, is indispensable for the growth, differentiation, and survival of skeletal muscle cells, but little is known about the function of other regulatory subunits such as p55 and p50. We examined the subcellular localization and the expression of the regulatory subunits of class IA PI3-kinase in L6 myoblasts. Both p55 and p50 as well as p85 were expressed in L6 myoblasts. Whereas p85 was localized at both cytosolic and nuclear tractions, p55 and p50 were localized at only the nuclear traction. During the differentiation of L6 myoblasts, the protein concentrations of both p55 and p50 were decreased but that of p85 was not significantly changed. Menadione-induced oxidative stress induced the translocation of p85 from cytosol to nucleus and the increase of p55 expression. These results suggest that the regulatory subunits of class IA PI3-kinase play an important role in L6 myoblasts.

  • PDF

Identification of to Hexapeptides that Render C2 Myoblasts the Resistant Menadione-induced Cell Death

  • Hwang, Sung-Ho;Kim, Min-Jeong;Lim, Jeong-A;Woo, Joo-Hong;Kim, Hye-Sun
    • Animal cells and systems
    • /
    • 제12권1호
    • /
    • pp.35-39
    • /
    • 2008
  • Menadione induced cell death in cultured C2 myoblasts. By screening synthetic peptide libraries composed of random sequence of hexapeptides, we identified the hexa-peptides pool of(Ala/Ile)-(Ile/Met)-Val-Ile-Asp-(Met/Ser)-$NH_2$ that protected the myoblasts against menadioneinduced cell death. Pre-incubation with the hexapeptide pool reduced the number of cells detached from culture dish substrate and increased the ratio of relative viability against menadione. In addition, the peptides strongly increased the expression of Bcl-2, an anti-apoptotic protein. These results suggest that the hexapeptides might enhance the resistance to cell death against menadione by increasing the expression of Bcl-2.

2, 4-Thiazolidindion Induced Plasticity of Myoblast (C2C12) and Satellite Cells (Porcine) - A Comparative Study

  • Singh, N.K.;Chae, H.S.;Hwang, I.H.;Yoo, Y.M.;Ahn, C.N.;Lee, H.J.;Park, H.J.;Chung, H.Y.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • 제20권7호
    • /
    • pp.1115-1119
    • /
    • 2007
  • This study was conducted to determine the difference between satellite cells (porcine) and myoblasts (C2C12) in their differentiation under the influence of 2, 4-thiazolidindion. C2C12 myoblast cells and porcine satellite cells (isolated from 10 d old $Landrace{\times}Duroc$ piglets) were grown to absolute confluency. Post confluent cells (day 0) were further exposed to adipogenic induction medium along with 2, 4-thiazolidindion ($8{\mu}M$) for 2 d. Thereafter, cells were exposed to 2, 4-thiazolidindion alone every 2 d till day 10 and analysed. The control was cultured in differentiation medium without any treatment. Increased (p<0.05) expression of transcriptional factors i.e. C/EBP-${\alpha}$ and PPAR-${\gamma}$ and transition of cells to adipocyte morphology was noticed from 2 d and 4 d onwards in satellite cells (Porcine) and myoblasts (C2C12) respectively. Myogenesis was observed to be suppressed completely in case of satellite cells compared to myoblasts in response to 2, 4-thiazolidindion. Pax-7 (transcriptional factor) appeared as a sole entity to satellite cells only, as it was not identified in case of myoblasts. Although both the cells were converting to adipoblasts, the degree of their conversion was different in response to 2, 4-thiazolidindion. Therefore, the hypothesis that satellite cells contribute various domains to the growing myoblasts appeared obscured and found to be dependent on the proliferative energy/or degree of fusion. However, it revealed satellite cells as currency to myoblasts/muscle.

Mitochondrial dysfunction reduces the activity of KIR2.1 K+ channel in myoblasts via impaired oxidative phosphorylation

  • Woo, JooHan;Kim, Hyun Jong;Nam, Yu Ran;Kim, Yung Kyu;Lee, Eun Ju;Choi, Inho;Kim, Sung Joon;Lee, Wan;Nam, Joo Hyun
    • The Korean Journal of Physiology and Pharmacology
    • /
    • 제22권6호
    • /
    • pp.697-703
    • /
    • 2018
  • Myoblast fusion depends on mitochondrial integrity and intracellular $Ca^{2+}$ signaling regulated by various ion channels. In this study, we investigated the ionic currents associated with $[Ca^{2+}]_i$ regulation in normal and mitochondrial DNA-depleted(${\rho}0$) L6 myoblasts. The ${\rho}0$ myoblasts showed impaired myotube formation. The inwardly rectifying $K^+$ current ($I_{Kir}$) was largely decreased with reduced expression of KIR2.1, whereas the voltage-operated $Ca^{2+}$ channel and $Ca^{2+}$-activated $K^+$ channel currents were intact. Sustained inhibition of mitochondrial electron transport by antimycin A treatment (24 h) also decreased the $I_{Kir}$. The ${\rho}0$ myoblasts showed depolarized resting membrane potential and higher basal $[Ca^{2+}]_i$. Our results demonstrated the specific downregulation of $I_{Kir}$ by dysfunctional mitochondria. The resultant depolarization and altered $Ca^{2+}$ signaling might be associated with impaired myoblast fusion in ${\rho}0$ myoblasts.

한우(Bos taurus coreanae) 유래 myoblast에서 전사인자 과발현에 의한 지방세포로의 교차 분화 유도 (Effects of Ectopic Expression of Transcription Factors on Adipogenic Transdifferentiation in Bovine Myoblasts)

  • 문양수
    • 생명과학회지
    • /
    • 제22권10호
    • /
    • pp.1316-1323
    • /
    • 2012
  • 본 연구는 한우유래 myoblast에서 지방세포분화 유도 전사인자들을 과발현시켜 지방세포로의 교차분화를 유도하기 위하여 실시하였다. 한우 유래 satellite cell을 배양한 후 adipogenic transcription factor인 $PPAR{\gamma}$, C/$EBP{\alpha}$, SREBP1c, KLF5등을 단독 또는 co-transfection을 실시하여 세포에 과발현을 유도하였다. 이들 세포들은 adipogenic differentiation medium에서 2일간 배양한 후growth medium에서 8일간 추가로 배양하였다. 지방세포로의 교차분화 유무는 Oil-red O염색과 지방세포 마커 유전자들의 발현으로 확인하였다. $PPAR{\gamma}$과 C/$EBP{\alpha}$를 각각 단독으로 과발현을 유도한 경우myoblast에서 지방세포로의 교차분화를 유도하기에는 충분하지 못하였다. 그러나 $PPAR{\gamma}$와 C/$EBP{\alpha}$을 co-transfection을 실시한 경우 지방세포로의 교차분화가 유도되었고, 세포내지방구형성, 지방세포 마커유전자의 발현, 근세포 마커유전자의 발현 감소 등이 확인되었다. KLF5 와 $PPAR{\gamma}$를 동시에 과발현할 경우 지방세포로의 교차분화를 볼 수 있었지만 KLF단독의 경우는 교차분화를 유도하지 못하였다. 할성형SREBP1c (tSREBP1c)의 경우, 단독으로 myoblast에 과발현을 처리한 경우만으로 지방세포로의 교차분화를 유도할 수 있었다. 이들 결과는 한우유래 satellite cell을 이용하여 지방세포분화 전사인자를 단독 혹은 조합하여 이들 세포에 과발현 시킬 경우 지방세포로의 교차분화를 유도할 수 있음을 보여 주었다.