• Title/Summary/Keyword: Myoblast differentiation

Search Result 99, Processing Time 0.033 seconds

microRNA for determining the age-related myogenic capabilities of skeletal muscle

  • Lee, Kwang-Pyo;Shin, Yeo Jin;Kwon, Ki-Sun
    • BMB Reports
    • /
    • v.48 no.11
    • /
    • pp.595-596
    • /
    • 2015
  • Skeletal muscle exhibits a loss of muscle mass and function with age. Decreased regenerative potential of muscle stem/progenitor cells is a major underlying cause of sarcopenia. We analyzed microRNAs (miRNA) that are differentially expressed in young and old myoblasts, to identify novel intrinsic factors that play a degenerative role in aged skeletal muscle. miR-431, one of decreasing miRNAs in old myoblasts, improved the myogenic differentiation when overexpressed in old myoblast, but suppressed their myogenic capability in knockdowned young myoblasts. We found that miR-431 directly binds to 3` untranslated regions (UTR) of Smad4 mRNA, and decreases its expression. Given that SMAD4 is one of the downstream effectors of TGF-β, a well-known degenerative signaling pathway in myogenesis, the decreased miR-431 in old myoblast causes SMAD4 elevation, thus resulting in defective myogenesis. Exogenous expression of miR-431 greatly improved the muscle regeneration in the cardiotoxin-injured hindlimb muscle of old mice by reducing SMAD4 levels. Since the miR-431 seed sequence is conserved in human SMAD4 3'UTR, miR-431 regulates the myogenic capacity of human skeletal myoblasts in the same manner. Our results suggest that age-associated miR-431 is required for the maintenance of the myogenic capability in myoblasts, thus underscoring its potential as a therapeutic target to slow down muscle aging.

The roles of growth factors and hormones in the regulation of muscle satellite cells for cultured meat production

  • Syed Sayeed Ahmad;Hee Jin Chun;Khurshid Ahmad;Sibhghatulla Shaikh;Jeong Ho Lim;Shahid Ali;Sung Soo Han;Sun Jin Hur;Jung Hoon Sohn;Eun Ju Lee;Inho Choi
    • Journal of Animal Science and Technology
    • /
    • v.65 no.1
    • /
    • pp.16-31
    • /
    • 2023
  • Cultured meat is a potential sustainable food generated by the in vitro myogenesis of muscle satellite (stem) cells (MSCs). The self-renewal and differentiation properties of MSCs are of primary interest for cultured meat production. MSC proliferation and differentiation are influenced by a variety of growth factors such as insulin-like growth factors (IGF-1 and IGF-2), transforming growth factor beta (TGF-β), fibroblast growth factors (FGF-2 and FGF-21), platelet-derived growth factor (PDGF) and hepatocyte growth factor (HGF) and by hormones like insulin, testosterone, glucocorticoids, and thyroid hormones. In this review, we investigated the roles of growth factors and hormones during cultured meat production because these factors provide signals for MSC growth and structural stability. The aim of this article is to provide the important idea about different growth factors such as FGF (enhance the cell proliferation and differentiation), IGF-1 (increase the number of myoblasts), PDGF (myoblast proliferation), TGF-β1 (muscle repair) and hormones such as insulin (cell survival and growth), testosterone (muscle fiber size), dexamethasone (myoblast proliferation and differentiation), and thyroid hormones (amount and diameter of muscle fibers and determine the usual pattern of fiber distributions) as media components during myogenesis for cultured meat production.

miR-3074-3p promotes myoblast differentiation by targeting Cav1

  • Lee, Bora;Shin, Yeo Jin;Lee, Seung-Min;Son, Young Hoon;Yang, Yong Ryoul;Lee, Kwang-Pyo
    • BMB Reports
    • /
    • v.53 no.5
    • /
    • pp.278-283
    • /
    • 2020
  • Muscle fibers are generally formed as multinucleated fibers that are differentiated from myoblasts. Several reports have identified transcription factors and proteins involved in the process of muscle differentiation, but the roles of microRNAs (miRNAs) in myogenesis remain unclear. Here, comparative analysis of the miRNA expression profiles in mouse myoblasts and gastrocnemius (GA) muscle uncovered miR-3074-3p as a novel miRNA showing markedly reduced expression in fully differentiated adult skeletal muscle. Interestingly, elevating miR-3074-3p promoted myogenesis in C2C12 cells, primary myoblasts, and HSMMs, resulting in increased mRNA expression of myogenic makers such as Myog and MyHC. Using a target prediction program, we identified Caveolin-1 (Cav1) as a target mRNA of miR-3074-3p and verified that miR-3074-3p directly interacts with the 3' untranslated region (UTR) of Cav1 mRNA. Consistent with the findings in miR-3074-3p-overexpressing myoblasts, knockdown of Cav1 promoted myogenesis in C2C12 cells and HSMMs. Taken together, our results suggest that miR-3074-3p acts a positive regulator of myogenic differentiation by targeting Cav1.

The expression and functional roles of microRNAs in stem cell differentiation

  • Shim, Jiwon;Nam, Jin-Wu
    • BMB Reports
    • /
    • v.49 no.1
    • /
    • pp.3-10
    • /
    • 2016
  • microRNAs (miRNAs) are key regulators of cell state transition and retention during stem cell proliferation and differentiation by post-transcriptionally downregulating hundreds of conserved target genes via seed-pairing in their 3' untranslated region. In embryonic and adult stem cells, dozens of miRNAs that elaborately control stem cell processes by modulating the transcriptomic context therein have been identified. Some miRNAs accelerate the change of cell state into progenitor cell lineages—such as myoblast, myeloid or lymphoid progenitors, and neuro precursor stem cells—and other miRNAs decelerate the change but induce proliferative activity, resulting in cell state retention. This cell state choice can be controlled by endogenously or exogenously changing miRNA levels or by including or excluding target sites. This control of miRNA-mediated gene regulation could improve our understanding of stem cell biology and facilitate their development as therapeutic tools. [BMB Reports 2016; 49(1): 3-10]

Effect of Chungsimyeonjaeum on myocardiac cell injury in mouse myoblast $C_2Cl_{12}$ cells (청심연자음(淸心蓮子飮)이 Mouse유래 $C_2Cl_{12}$세포주에서 심근세포 손상의 보호 효과)

  • Lee, Sang-Heon;Park, Chi-Sang
    • The Journal of Korean Medicine
    • /
    • v.27 no.3 s.67
    • /
    • pp.26-37
    • /
    • 2006
  • Determination and differentiation of cells in the skeletal muscle lineage is positively regulated by cell-cell contact. Differentiation proteins proposed to mediate this effect include both classical MyoD and MEF members; potential interactions between the promyogenic activities of these classes of protein, however, are unknown. We show here that MyoD and MEF, two promyogenic family members that relate to each other in a cis fashion, form interactions with MyoD and MEF. These proteins contain myosin-heavy chainsand are enriched at sites of cell-cell contact between myoblasts. Therefore, in differentiation of MyoD and MEF from Chungsimyeonjaeum interact dependently, suggesting that the interactions occur in a cis fashion; consistent with this conclusion, MyoD-mediated differentiation is required for myoblasts to occur by Chungsimyeonjaeum. Inhibition in myoblasts of a MyoD by Staurosporine in its ability to associate with MEF interferes with differentiation as assessed by morphological and transcription levels, suggesting that this interaction is functionally important in myogenesis. Also, some of the differentiation-mediated proteins that are required for myogenesis seem to be based on interdependent activities of the promyogenic classical smad-subfamily.

  • PDF

MiR-141-3p regulates myogenic differentiation in C2C12 myoblasts via CFL2-YAP-mediated mechanotransduction

  • Nguyen, Mai Thi;Lee, Wan
    • BMB Reports
    • /
    • v.55 no.2
    • /
    • pp.104-109
    • /
    • 2022
  • Skeletal myogenesis is essential to keep muscle mass and integrity, and impaired myogenesis is closely related to the etiology of muscle wasting. Recently, miR-141-3p has been shown to be induced under various conditions associated with muscle wasting, such as aging, oxidative stress, and mitochondrial dysfunction. However, the functional significance and mechanism of miR-141-3p in myogenic differentiation have not been explored to date. In this study, we investigated the roles of miR-141-3p on CFL2 expression, proliferation, and myogenic differentiation in C2C12 myoblasts. MiR-141-3p appeared to target the 3'UTR of CFL2 directly and suppressed the expression of CFL2, an essential factor for actin filament (F-actin) dynamics. Transfection of miR-141-3p mimic in myoblasts increased F-actin formation and augmented nuclear Yes-associated protein (YAP), a key component of mechanotransduction. Furthermore, miR-141-3p mimic increased myoblast proliferation and promoted cell cycle progression throughout the S and G2/M phases. Consequently, miR-141-3p mimic led to significant suppressions of myogenic factors expression, such as MyoD, MyoG, and MyHC, and hindered the myogenic differentiation of myoblasts. Thus, this study reveals the crucial role of miR-141-3p in myogenic differentiation via CFL2-YAP-mediated mechanotransduction and provides implications of miRNA-mediated myogenic regulation in skeletal muscle homeostasis.

Saturated fatty acid-inducible miR-103-3p impairs the myogenic differentiation of progenitor cells by enhancing cell proliferation through Twinfilin-1/F-actin/YAP1 axis

  • Mai Thi Nguyen;Wan Lee
    • The Korean Journal of Physiology and Pharmacology
    • /
    • v.27 no.3
    • /
    • pp.277-287
    • /
    • 2023
  • Actin dynamics play an essential role in myogenesis through multiple mechanisms, such as mechanotransduction, cell proliferation, and myogenic differentiation. Twinfilin-1 (TWF1), an actin-depolymerizing protein, is known to be required for the myogenic differentiation of progenitor cells. However, the mechanisms by which they epigenetically regulate TWF1 by microRNAs under muscle wasting conditions related to obesity are almost unknown. Here, we investigated the role of miR-103-3p in TWF1 expression, actin filament modulation, proliferation, and myogenic differentiation of progenitor cells. Palmitic acid, the most abundant saturated fatty acid (SFA) in the diet, reduced TWF1 expression and impeded myogenic differentiation of C2C12 myoblasts, while elevating miR-103-3p levels in myoblasts. Interestingly, miR-103-3p inhibited TWF1 expression by directly targeting its 3'UTR. Furthermore, ectopic expression of miR-103-3p reduced the expression of myogenic factors, i.e., MyoD and MyoG, and subsequently impaired myoblast differentiation. We demonstrated that miR-103-3p induction increased filamentous actin (F-actin) and facilitated the nuclear translocation of Yes-associated protein 1 (YAP1), thereby stimulating cell cycle progression and cell proliferation. Hence, this study suggests that epigenetic suppression of TWF1 by SFA-inducible miR-103-3p impairs myogenesis by enhancing the cell proliferation triggered by F-actin/YAP1.

Ziziphus jujuba mill. Extract Promotes Myogenic Differentiation of C2C12 Skeletal Muscle Cells

  • Gyeong Do Park;So Young Eun;Yoon-Hee Cheon;Chong Hyuk Chung;Chang Hoon Lee;Myeung Su Lee;Ju-Young Kim
    • Biomedical Science Letters
    • /
    • v.29 no.1
    • /
    • pp.26-33
    • /
    • 2023
  • Ziziphus jujuba Mill. (ZJM), a traditional folk medicine and functional food in South Korea and China, has been reported to having pharmacological activities against anti-cancer, anti-oxidative, and anti-obesity. However, the effect of ZJM related to myoblast differentiation has not been known. In this study, we investigated the effects and mechanism of ZJM on myogenic differentiation of C2C12 cells. ZJM promotes myogenic differentiation and elevates the formation of multinucleated myotube compared to the control group. ZJM significantly increased the mRNA and protein expression of MyHC1, myogenin and MyoD in dose- and time-dependent manner. Interestingly, ZJM significantly inhibited the mRNA and protein expression of protein degradation markers, atrogin-1 and MuRF-1, in dose- and time-dependent manner. Taken together, our data suggest that ZJM is a potential functional candidate for muscle growth and strength by promoting myogenic differentiation.

Studies on the Fusion Mechanism of the Cell (1) (細胞의 融合機作에 관한 硏究(1))

  • Kang, Man-Sik;Seunhyon Choe;Wookeun Song
    • The Korean Journal of Zoology
    • /
    • v.26 no.4
    • /
    • pp.235-251
    • /
    • 1983
  • Several approaches have been made to access the mechanism of fusion in chick myoblast in vitro. Lactoperoxidase-catalyzed iodination was applied to labell cell surface proteins during myogenesis. Quantitative as well as qualitative changes were observed in $^131$I surface components of prefusion and postfusion cells. Two proteins with a molecular weight of 165K and 93K daltons were observed to appear at the onset of fusion as compared to prefusion stage. At the same time, 245K dalton protein decreased whereas the low molecular weight proteins increased consistently. The decrease of high molecular weight proteins appears to be associated with the cell cycle of myoblast during differentiation. The increased appearance of low molecular weight proteins might be due to the proteolytic cleavage of the high molecular weight proteins. Examination of intracellulr cAMP levels during fusion has revealed that a large but transient increase in cAMP occurs before the onset of fusion. This result suggests a causal relationship between the increase of cAMP and the onset of fusion, and further, that differentiating myoblasts are synthronized to a high degree. During the course of myoblast differentiation, at least four lowe molecular weight proteins, which different from major surface proteins iodinated, were identifiable in the culture medium. These proteins could be ascribed to be released from the membrane by proteolytic cleavage of surface proteins in the course of myoblast fusion. The significance of cell surface alterations and the released proteins during the fusion, the involvement of cAMP in the onset of fusion and the possibility that fusion is promoted by external factor(s) are discussed.

  • PDF

Effects of Ectopic Expression of Transcription Factors on Adipogenic Transdifferentiation in Bovine Myoblasts (한우(Bos taurus coreanae) 유래 myoblast에서 전사인자 과발현에 의한 지방세포로의 교차 분화 유도)

  • Moon, Yang Soo
    • Journal of Life Science
    • /
    • v.22 no.10
    • /
    • pp.1316-1323
    • /
    • 2012
  • The present study was conducted to investigate whether myoblasts can be transdifferentiated into adipocytes by ectopic expression of adipogenic transcription factors, including peroxisome proliferator-activated receptor-${\gamma}$ ($PPAR{\gamma}$), CCAAT/enhancer-binding protein-${\alpha}$ (C/$EBP{\alpha}$), sterol regulatory element binding protein-1c (SREBP1c), and Krueppel-like factor 5 (KLF5), in primary bovine satellite cells. Transcription factors were transiently transfected into primary bovine myoblasts, and the cells were cultured with adipogenic differentiation medium for 2 days and then cultured on growth medium for an additional 8 days. Ectopic expression of $PPAR{\gamma}$ or C/$EBP{\alpha}$ alone was insufficient to induce adipogenesis in myoblasts. However, overexpression of both $PPAR{\gamma}$ and C/$EBP{\alpha}$ in myoblasts was able to induce adipogenic transdifferentiation as indicated by the appearance of mature adipocytes, the induction of adipogenic gene expressions, and the suppression of myogenic gene expressions. In addition, KLF5 and $PPAR{\gamma}$ co-transfected bovine myoblasts were converted to adipocytes but not in cells transfected with only KLF5 expression vector. Overexpression of SREBP1c alone was sufficient to induce transdifferentiation from myoblasts into adipocytes. These results demonstrate that primary bovine satellite cells can be transdifferentiated into adipocytes either by single ectopic expression or combined expression of adipogenic transcription factors in a culture system.