• 제목/요약/키워드: Myoblast

검색결과 157건 처리시간 0.033초

히스톤 탈아세틸화 효소 억제제 trichostatin A가 C2C12 myoblast 세포 분화와 세포주기 조절인자의 발현에 미치는 영향 (Effects of Histone Deacetylase Inhibitor, Trichostatin A, on the Differentiation of C2C12 Myoblasts and the Expression of Cell Cycle Regulators)

  • 이원준
    • 생명과학회지
    • /
    • 제17권7호통권87호
    • /
    • pp.976-982
    • /
    • 2007
  • 본 연구는 분화 전단계인 C2C12 myoblast세포에 중요한 후천적 기작의 하나인 DNA 히스톤 단백질의 아세틸화를 조절하였을 때 일어나는 변화를 살펴본 결과, 히스톤 탈아세틸화 효소를 trichostatin A로서 억제시키자 C2C12 myoblast 세포가 smooth muscle로 분화하였다. 이는 immunofluorescentstaining을 통해 smooth muscle ${\alpha}-actin$의 발현 증가를 trishostatin A로 처리한 세포에서 관찰하였으며, DAPI 염색을 통해 대조군 세포와 비교하여 세포의 증식이 많이 억제됨을 관찰하였다. 또한 real-time PCR 결과는 smooth muscle ${\alpha}$-actin과 transgelin mRNA의 발현이 trichostatin A 처리군 세포에서 현저히 증가함을 보여주었다. 이러한 결과를 바탕으로 히스톤 단백질의 탈아세틸화 억제는 C2C12 myoblast 세포의 분화에 매우 중요한 역할을 하며, 또한 C2C12 myoblast 세포를 골격근인 다핵의 myotube로 분화시키지 않고, smooth muscle로 분화시킴을 알 수 있었다. 이것은 분명히 HDAC억제제 인 trichostatin A가 DNA 히스톤 단백질의 HDAC 효소에 의한 탈아세틸화를 강력히 억제하고, 이러한 HDAC효소의 억제는 세포주기에 있어서 증식과 분화를 조절하는 유전자들의 발현을 조절하였음을 시사한다. 이를 검증하기 위해 세포주기 조절인자인 p21과 cyclin Dl mRNA의 발현을 조사한 결과 세포를 증식단계로 진행하는데 있어서 필수적인 cdk 억제제인 p21 mRNA의 발현이 trichostatin A로 처리한 세포에서 현저히 증가함을 보였으며, 세포 증식을 유도하는 cyclin Dl mRNA의 발현은 trichostatin A를 처 리 한 후 24시간 후 유의하게 감소함을 보였는데 이는 trichostatin A가 세포증식을 억제하는 초기단계에서 cyclin Dl 유전자의 발현을 조절함을 보여준다. 향후 연구에서는 또 하나의 중요한 후천적 기작인 DNA 메틸화와 히스톤 아세틸화가 유전자 발현을 조절하는데 있어서 상호작용에 대한 연구가 필요할 것으로 생각된다.

2, 4-Thiazolidindion Induced Plasticity of Myoblast (C2C12) and Satellite Cells (Porcine) - A Comparative Study

  • Singh, N.K.;Chae, H.S.;Hwang, I.H.;Yoo, Y.M.;Ahn, C.N.;Lee, H.J.;Park, H.J.;Chung, H.Y.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • 제20권7호
    • /
    • pp.1115-1119
    • /
    • 2007
  • This study was conducted to determine the difference between satellite cells (porcine) and myoblasts (C2C12) in their differentiation under the influence of 2, 4-thiazolidindion. C2C12 myoblast cells and porcine satellite cells (isolated from 10 d old $Landrace{\times}Duroc$ piglets) were grown to absolute confluency. Post confluent cells (day 0) were further exposed to adipogenic induction medium along with 2, 4-thiazolidindion ($8{\mu}M$) for 2 d. Thereafter, cells were exposed to 2, 4-thiazolidindion alone every 2 d till day 10 and analysed. The control was cultured in differentiation medium without any treatment. Increased (p<0.05) expression of transcriptional factors i.e. C/EBP-${\alpha}$ and PPAR-${\gamma}$ and transition of cells to adipocyte morphology was noticed from 2 d and 4 d onwards in satellite cells (Porcine) and myoblasts (C2C12) respectively. Myogenesis was observed to be suppressed completely in case of satellite cells compared to myoblasts in response to 2, 4-thiazolidindion. Pax-7 (transcriptional factor) appeared as a sole entity to satellite cells only, as it was not identified in case of myoblasts. Although both the cells were converting to adipoblasts, the degree of their conversion was different in response to 2, 4-thiazolidindion. Therefore, the hypothesis that satellite cells contribute various domains to the growing myoblasts appeared obscured and found to be dependent on the proliferative energy/or degree of fusion. However, it revealed satellite cells as currency to myoblasts/muscle.

Mitochondrial dysfunction reduces the activity of KIR2.1 K+ channel in myoblasts via impaired oxidative phosphorylation

  • Woo, JooHan;Kim, Hyun Jong;Nam, Yu Ran;Kim, Yung Kyu;Lee, Eun Ju;Choi, Inho;Kim, Sung Joon;Lee, Wan;Nam, Joo Hyun
    • The Korean Journal of Physiology and Pharmacology
    • /
    • 제22권6호
    • /
    • pp.697-703
    • /
    • 2018
  • Myoblast fusion depends on mitochondrial integrity and intracellular $Ca^{2+}$ signaling regulated by various ion channels. In this study, we investigated the ionic currents associated with $[Ca^{2+}]_i$ regulation in normal and mitochondrial DNA-depleted(${\rho}0$) L6 myoblasts. The ${\rho}0$ myoblasts showed impaired myotube formation. The inwardly rectifying $K^+$ current ($I_{Kir}$) was largely decreased with reduced expression of KIR2.1, whereas the voltage-operated $Ca^{2+}$ channel and $Ca^{2+}$-activated $K^+$ channel currents were intact. Sustained inhibition of mitochondrial electron transport by antimycin A treatment (24 h) also decreased the $I_{Kir}$. The ${\rho}0$ myoblasts showed depolarized resting membrane potential and higher basal $[Ca^{2+}]_i$. Our results demonstrated the specific downregulation of $I_{Kir}$ by dysfunctional mitochondria. The resultant depolarization and altered $Ca^{2+}$ signaling might be associated with impaired myoblast fusion in ${\rho}0$ myoblasts.

microRNA for determining the age-related myogenic capabilities of skeletal muscle

  • Lee, Kwang-Pyo;Shin, Yeo Jin;Kwon, Ki-Sun
    • BMB Reports
    • /
    • 제48권11호
    • /
    • pp.595-596
    • /
    • 2015
  • Skeletal muscle exhibits a loss of muscle mass and function with age. Decreased regenerative potential of muscle stem/progenitor cells is a major underlying cause of sarcopenia. We analyzed microRNAs (miRNA) that are differentially expressed in young and old myoblasts, to identify novel intrinsic factors that play a degenerative role in aged skeletal muscle. miR-431, one of decreasing miRNAs in old myoblasts, improved the myogenic differentiation when overexpressed in old myoblast, but suppressed their myogenic capability in knockdowned young myoblasts. We found that miR-431 directly binds to 3` untranslated regions (UTR) of Smad4 mRNA, and decreases its expression. Given that SMAD4 is one of the downstream effectors of TGF-β, a well-known degenerative signaling pathway in myogenesis, the decreased miR-431 in old myoblast causes SMAD4 elevation, thus resulting in defective myogenesis. Exogenous expression of miR-431 greatly improved the muscle regeneration in the cardiotoxin-injured hindlimb muscle of old mice by reducing SMAD4 levels. Since the miR-431 seed sequence is conserved in human SMAD4 3'UTR, miR-431 regulates the myogenic capacity of human skeletal myoblasts in the same manner. Our results suggest that age-associated miR-431 is required for the maintenance of the myogenic capability in myoblasts, thus underscoring its potential as a therapeutic target to slow down muscle aging.

도담탕(導痰湯)이 $C_{2}C_{12}$세포주로부터 myostatin발현에 의한 심근에 미치는 영향 (Effect of Differentiation for Mouse Myoblast $C_{2}C_{12}$ Cells against Myostatin expression from Dodamtang)

  • 이유승;신유정;박종혁;김승모;백경민;박치상
    • 대한한방내과학회지
    • /
    • 제29권1호
    • /
    • pp.243-257
    • /
    • 2008
  • Myostatin, a negative regulator of myogenesis, is shown to function by controlling the proliferation of myoblasts. In this study we show that myostatin is an inhibitor of myoblast differentiation and that this inhibition is mediated through Smad 3. To determine MyoD expression by Dodamtang treatment, we compared the expression pattern of $C_{2}C_{12}$ mouse myoblasts that constitutively express myostatin with control cells. In vitro, increasing concentrations of Dodamtang reversibly prevented the myogenic blockage of myoblasts by myostatin expression. ELISA assay, Western and confocal analysis indicated that treatment of Dodamtang to the low serum culture media increased the levels of MyoD leading to the inhibition of myogenic differentiation by myostatin. The stable transfection of $C_{2}C_{12}$ myoblasts with myostatin expressing constructs did rescue MyoD-induced myogenic differentiation. Consistent with this, the treatment of Dodamtang rescued the expression of a MyoD in $C_{2}C_{12}$ myoblasts treated with myostatin. Taken together, these results suggest that induction of MyoD by Dodamtang inhibits myostatin activity and expression via SMAD3 resulting in the rescue of the myoblasts to differentiate into myotubes. Thus we propose that myostatin action by Dodamtang plays a critical role in myogenic differentiation and that the muscular hyperplasia and hypertrophy seen in animals that blockage of functional myostatin is because of deregulated proliferation and differentiation of myoblasts.

  • PDF

Myotube differentiation in clustered regularly interspaced short palindromic repeat/Cas9-mediated MyoD knockout quail myoblast cells

  • Kim, Si Won;Lee, Jeong Hyo;Park, Byung-Chul;Park, Tae Sub
    • Asian-Australasian Journal of Animal Sciences
    • /
    • 제30권7호
    • /
    • pp.1029-1036
    • /
    • 2017
  • Objective: In the livestock industry, the regulatory mechanisms of muscle proliferation and differentiation can be applied to improve traits such as growth and meat production. We investigated the regulatory pathway of MyoD and its role in muscle differentiation in quail myoblast cells. Methods: The MyoD gene was mutated by the clustered regularly interspaced short palindromic repeat (CRISPR)/Cas9 technology and single cell-derived MyoD mutant sublines were identified to investigate the global regulatory mechanism responsible for muscle differentiation. Results: The mutation efficiency was 73.3% in the mixed population, and from this population we were able to establish two QM7 MyoD knockout subline (MyoD KO QM7#4) through single cell pick-up and expansion. In the undifferentiated condition, paired box 7 expression in MyoD KO QM7#4 cells was not significantly different from regular QM7 (rQM7) cells. During differentiation, however, myotube formation was dramatically repressed in MyoD KO QM7#4 cells. Moreover, myogenic differentiation-specific transcripts and proteins were not expressed in MyoD KO QM7#4 cells even after an extended differentiation period. These results indicate that MyoD is critical for muscle differentiation. Furthermore, we analyzed the global regulatory interactions by RNA sequencing during muscle differentiation. Conclusion: With CRISPR/Cas9-mediated genomic editing, single cell-derived sublines with a specific knockout gene can be adapted to various aspects of basic research as well as in functional genomics studies.

Effect of Lysophosphatidic Acid on Proliferation and Differentiation of Rat Skeletal Myoblasts in Culture

  • Kwon, Min-Seong;Cho
    • Animal cells and systems
    • /
    • 제1권4호
    • /
    • pp.641-646
    • /
    • 1997
  • Lysophosphatidic acid (LPA; 1-acyl-glycerol-3-phosphate) has been known as an intercellular phospholipid messenger with a wide range of biological activities. In this study, the effect of LPA on both the proliferation and differentiation of rat E63 myoblasts has been investigated. In the serum-free Insulin-Transferrin-Selenium (ITS) media, the proliferation of E63 cells was largely restricted. Addition of LPA into the ITS media strongly promoted the cell proliferation and resulted in two to four fold increase of cell number. Furthermore, it appeared to increase the percent fusion in a dose-dependent manner up to 15 ug/ml. The synthesis of myosin heavy chain (MHC) was increased by LPA as well. These results indicate that LPA is able to promote both cell proliferation and differentiation in rat E63 myoblasts. Suramin, known to have uncoupling activity on growth factor-receptor interaction, was tested for antagonistic activity in myoblast proliferation and differentiation. Myoblasts grown in the ITS medium containing LPA were able to proliferate well even in the presence high concentration of suramin whereas myoblast differentiation was completely blocked by 30 ug/ml of suramin. The inhibitory effect of suramin on the myoblast differentiation was completely reversible by removing the suramin. This result indicates that the intracellular signaling pathway of LPA leading to cell proliferation might be distinct from that leading to cell differentiation on E63 myoblasts. Also, the antagonistic effect of suramin suggests that the differentiation activity elicited by LPA might be mediated by a specific G protein-coupled receptor.

  • PDF

Ginsenoside Rg1 from Panax ginseng enhances myoblast differentiation and myotube growth

  • Go, Ga-Yeon;Lee, Sang-Jin;Jo, Ayoung;Lee, Jaecheol;Seo, Dong-Wan;Kang, Jong-Sun;Kim, Si-Kwan;Kim, Su-Nam;Kim, Yong Kee;Bae, Gyu-Un
    • Journal of Ginseng Research
    • /
    • 제41권4호
    • /
    • pp.608-614
    • /
    • 2017
  • Background: Ginsenoside Rg1 belongs to protopanaxatriol-type ginsenosides and has diverse pharmacological activities. In this report, we investigated whether Rg1 could upregulate muscular stem cell differentiation and muscle growth. Methods: C2C12 myoblasts, MyoD-transfected 10T1/2 embryonic fibroblasts, and HEK293T cells were treated with Rg1 and differentiated for 2 d, subjected to immunoblotting, immunocytochemistry, or immunoprecipitation. Results: Rg1 activated promyogenic kinases, p38MAPK (mitogen-activated protein kinase) and Akt signaling, that in turn promote the heterodimerization with MyoD and E proteins, resulting in enhancing myogenic differentiation. Through the activation of Akt/mammalian target of rapamycin pathway, Rg1 induced myotube growth and prevented dexamethasone-induced myotube atrophy. Furthermore, Rg1 increased MyoD-dependent myogenic conversion of fibroblast. Conclusion: Rg1 upregulates promyogenic kinases, especially Akt, resulting in improvement of myoblast differentiation and myotube growth.

계배 근원세포의 분화에 따른 세포 골격 단백질의 분해와 막 융합에 대한 Calpeptin의 억제 효과 (Calpeptin Blocks Myogenic Time-dependent Loss of Cytoskeletal Proteins and Membrane Fusion of Chick Embryonic Myoblasts)

  • 곽규봉;김혜선;전영주;박영순;정진하;하두봉
    • 한국동물학회지
    • /
    • 제36권3호
    • /
    • pp.342-346
    • /
    • 1993
  • 배양 근원세포의 세포 골격 단백질의 양이 분화과정에 따라 점차 감소하는 것으로 나타났다. 이러한 세포 골격 단백질의 분해는, 세포막에 투과성을 나타내는 calpain의 저해제인 calpeptin의 처리에 의하여 억제될 수 있었다. 또한, calpeptin은 특정 세포 골격 단백질의 분해를 제한적으로 억제하였으나, 전체적인 세포 단백질의 양상에는 별 영향을 주지 않았다. 뿐만 아니라, calpeptin은 농도 의존적으로 근원세포의 융합을 억제하였다. 반면에, calpain의 강력한 저해제이지만 세포막에 투과성을 보이지 않는 E-64는 세포 골격 단백질의 분해와 막 융합에 아무런 효과를 나타내지 못하였다. 이러한 결과는 calpain이 근세포 분화 시기에 따라 세포 골격 단백질의 분해를 촉매하며, 이 분해 과정은 근원세포 융합에 필연적인 것으로 추측된다. 또한, 이 결과는 calpain 저해제들의 선별적 효과가 그들의 세포막에 대한 투과성에 기인함을 시사한다.

  • PDF