• Title/Summary/Keyword: Myeongseongsan Granite

Search Result 4, Processing Time 0.016 seconds

Geochemical Studies on Petrogenesis of the Cretaceous Myeongseongsan Granite in the Northwestern Gyeonggi Massif (경기육괴 북서부에 분포하는 백악기 명성산 화강암의 성인에 대한 지화학적 연구)

  • Yi, Eun Ji;Park, Ha Eun;Park, Young-Rok
    • The Journal of the Petrological Society of Korea
    • /
    • v.26 no.4
    • /
    • pp.327-339
    • /
    • 2017
  • The Cretaceous Myeongseongsan Granite in the northwestern Gyeonggi Massif consists of a major pale pink-colored biotite monzogranite and a minor white-colored biotite alkaligranite. Low Sr and high Ba concentrations, negative Eu-anomalies in REE plot, negative Sr anomalies in spider diagram, a negative correlation between Sr and Rb, and positive correlations between Sr and Ba and $Eu/Eu^*$ indicate that a fractional crystallization of both plagioclase and K-feldspar played a significant role during magma evolution. The Myeongseongsan Granite is plotted in I-& S-type granites on I, S, A-type granite classification scheme. While the biotite monzogranite is plotted in unfractionated I-& S-type granite, the biotite alkaligranite is plotted in fractionated I-& S-type granite, which indicates that the biotite alkaligranite is a more differentiated product. In order to elucidate the nature of the protoliths of the peraluminous Myeongseongsan magma, we plotted in $Al_2O_3/TiO_2$ vs. $CaO/Na_2O$ and Rb/Sr vs. Rb/Ba diagrams, and they suggest that the Myeongseongsan Granite was derived from clay-poor metagreywackes and meta-psammites or their igneous counterparts. Whole-rock zircon saturation temperature indicates that the Myeongseongsan magma was melted at $740-799^{\circ}C$.

Granite Landforms in the Vicinity of Seungil-gyo Bridge at Cheorwon, Central Korea (철원군 승일교 인근의 화강암 지형 경관)

  • LEE, Min-Boo;HAN, Joo-Yup;KIM, Chang-Hwan
    • Journal of The Geomorphological Association of Korea
    • /
    • v.19 no.4
    • /
    • pp.27-37
    • /
    • 2012
  • This study investigated granite landforms formed by Hantan-gang fluvial erosion and deposition, or by weathering in the area neighboring the Seungil-gyo bridge in Cheorwon-gun Gangwon-do Korea, in which the contact zone of Myeongseongsan granite and Cheorwon lava plateau creates a unique landform. Major granite landforms are deeply weathered hill, sheet erosional landform, paleo-landform surface and paleosoil, micro-fluvial landforms such as pothole and groove, granite rampart, sand bar and boulder bar, former riverbed. And river cliffs on a weakly weathered dome act as a barrier to lateral shifting of the river.

Geology, Mineralization, and Age of the Pocheon Fe(-Cu) Skarn Deposit, Korea (한국 포천 철(-동) 스카른 광상의 지질, 광화작용 및 생성연대)

  • Kim, Chang Seong;Go, Ji Su;Choi, Seon-Gyu;Kim, Sang-Tae
    • Economic and Environmental Geology
    • /
    • v.47 no.4
    • /
    • pp.317-333
    • /
    • 2014
  • The Pocheon iron (-copper) deposit, located at the northwestern part of the Precambrian Gyeonggi massif in South Korea, genetically remains controversial. Previous researchers advocated a metamorphosed (-exhalative) sedimentary origin for iron enrichment. In this study, we present strong evidences for skarnification and Fe mineralization, spatially associated with the Myeongseongsan granite. The Pocheon deposit is composed of diverse carbonate rocks such as dolostone and limestone which are partially overprinted by various hydrothermal skarns such as sodic-calcic, calcic and magnesian skarn. Iron (-copper) mineralization occurs mainly in the sodic-calcic skarn zone, locally superimposed by copper mineralization during retrograde stage of skarn. Age data determined on phlogopites from retrograde skarn stage by Ar-Ar and K-Ar methods range from $110.3{\pm}1.0Ma$ to $108.3{\pm}2.8Ma$, showing that skarn iron mineralization in the Pocheon is closely related to the shallow-depth Myeongseongsan granite (ca. 112 Ma). Carbon-oxygen isotopic depletions of carbonates in marbles, diverse skarns, and veins can be explained by decarbonation and interaction with an infiltrating hydrothermal fluids in open system ($XCO_2=0.1$). The results of sulfur isotope analyses indicate that both of sulfide (chalcopyrite-pyrite composite) and anhydrites in skarn have very high sulfur isotope values, suggesting the $^{34}S$ enrichment of the Pocheon sulfide and sulfate sulfur was derived from sulfate in the carbonate protolith. Shear zones with fractures in the Pocheon area channeled the saline, high $fO_2$ hydrothermal fluids, resulting in locally developed intense skarn alteration at temperature range of about $500^{\circ}$ to $400^{\circ}C$.

Skarn Evolution and Fe-(Cu) Mineralization at the Pocheon Deposit, Korea (한국 포천 광상의 스카른 진화과정 및 철(-동)광화작용)

  • Go, Ji-Su;Choi, Seon-Gyu;Kim, Chang Seong;Kim, Jong Wook;Seo, Jieun
    • Economic and Environmental Geology
    • /
    • v.47 no.4
    • /
    • pp.335-349
    • /
    • 2014
  • The Pocheon skarn deposit, located at the northwestern part of the Precambrian Gyeonggi massif in South Korea, occurs at the contact between the Cretaceous Myeongseongsan granite and the Precambrian carbonate rocks, and is also controlled by N-S-trending shear zone. The skarn distribution and mineralogy reflects both structural and lithological controls. Three types of skarn formations based on mineral assemblages in the Pocheon skarn exist; a sodiccalcic skarn and a magnesian skarn mainly developed in the dolostone, and a calcic skarn developed in the limestone. Iron mineralization occurs in the sodic-calcic and magnesian skarn zone, locally superimposed by copper mineralization during retrograde skarn stage. The sodic-calcic skarn is composed of acmite, diopside, albite, garnet, magnetite, maghemite, anhydrite, apatite, and sphene. Retrograde alteration consists of tremolite, phlogopite, epidote, sericite, gypum, chlorite, quartz, calcite, and sulfides. Magnesian skarn mainly consists of diopside and forsterite. Pyroxene and olivine are mainly altered to tremolite, with minor phlogopite, talc, and serpentine. The calcic skarn during prograde stage mainly consists of garnet, pyroxene and wollastonite. Retrograde alteration consists of epidote, vesuvianite, amphibole, biotite, magnetite, chlorite, quartz, calcite, and sulfides. Microprobe analyses indicate that the majority of the Pocheon skarn minerals are enriched by Na-Mg composition and have high $Fe^{3+}/Fe^{2+}$, $Mg^{2+}/Fe^{2+}$, and $Al^{3+}/Fe^{2+}$ ratios. Clinopyroxene is acmitic and diopsidic composition, whereas garnet is relatively grossular-rich. Amphiboles are largely of tremolite, pargasite, and magnesian hastingsite composition. The prograde anhydrous skarn assemblages formed at about $400^{\circ}{\sim}500^{\circ}C$ in a highly oxidized environment ($fO_2=10^{-23}{\sim}10^{-26}$) under a condition of about 0.5 kbar pressure and $X(CO_2)=0.10$. With increasing fluid/rock interaction during retrograde skarn, epidote, amphibole, sulfides and calcite formed as temperature decreased to approximately $250^{\circ}{\sim}400^{\circ}C$ at $X(CO_2)=0.10$.