• Title/Summary/Keyword: Myeloid cell

Search Result 205, Processing Time 0.021 seconds

Agouti Gene의 Human Homologue의 Molecular Structure와 Chromosomal Mapping

  • Heajoon Y. Kwon;Scott J. Bultman;Christiane Loffler;Chen, Wen-Ji;Paul J. Furdon;John G. Powell;Usala, Anton-Lewis;William Wilkison;Ingo Hansman
    • Proceedings of the Korean Society of Applied Pharmacology
    • /
    • 1996.11a
    • /
    • pp.55-64
    • /
    • 1996
  • mouse chromesome2에 있는 agouti locus는 정상적으로는 털색깔을 조절하는 gene이다. mouse agouti gene은 최근에 cloning 되었고 131 amino acid peptide와 consensus signal peptide를 encode한다고 보고되었다. 이 논문에서 interspecies-DNA hybridization approach를 이용하여 mouse agouti gene의 human homologue를 cloning 하였다. Sequence analysis 결과, 이는 mouse gene에 85% 유사하였고 consensus signal peptide sequence 를 포함하는 132 amino acid를 coding하였다. somatic-cell hybrid mapping pannel과 Fluorescence-in-situ hybridization에 의한 chromosomal mapping을 한 결과, agouti gene은 MODY (maturity onset diabetes of the young), myeloid leukemia locus 등이 위치한 human chromosome 20q 11.2에 mapping 되었다. 성인 tissue로부터 추출한 RNA를 이용한 발현연구에 의하면 human agouti gene은 adipose tissue와 teatis에 발현되었다.

  • PDF

Suppression of the TRIF-Dependent Signaling Pathway of Toll-Like Receptors by Isoliquiritigenin in RAW264.7 Macrophages

  • Park, Se-Jeong;Song, Ho-Yeon;Youn, Hyung-Sun
    • Molecules and Cells
    • /
    • v.28 no.4
    • /
    • pp.365-368
    • /
    • 2009
  • Toll-like receptors (TLRs) play an important role in host defense by sensing invading microbial pathogens and initiating innate immune responses. The stimulation of TLRs by microbial components triggers the activation of myeloid differential factor 88 (MyD88)- and toll-interleukin-1 receptor domain-containing adapter inducing interferon-${\beta}$ (TRIF)-dependent downstream signaling pathways. Isoliquiritigenin (ILG), an active ingredient of Licorice, has been used for centuries to treat many chronic diseases. ILG inhibits the MyD88-dependent pathway by inhibiting the activity of inhibitor-${\kappa}B$ kinase. However, it is not known whether ILG inhibits the TRIF-dependent pathway. To evaluate the therapeutic potential of ILG, we examined its effect on signal transduction via the TRIF-dependent pathway of TLRs induced by several agonists. ILG inhibited nuclear factor-${\kappa}B$ and interferon regulatory factor 3 activation induced by lipopolysaccharide or polyinosinic-polycytidylic acid. ILG inhibited the lipopolysaccharide-induced phosphorylation of interferon regulatory factor 3 as well as interferon-inducible genes such as interferon inducible protein-10, and regulated activation of normal T-cell expressed and secreted (RANTES). These results suggest that ILG can modulate TRIF-dependent signaling pathways of TLRs, leading to decreased inflammatory gene expression.

Differential Gene Expression Profiling in Human Promyelocytic Leukemia Cells Treated with Benzene and Ethylbenzene

  • Sarma, Sailendra Nath;Kim, Youn-Jung;Ryu, Jae-Chun
    • Molecular & Cellular Toxicology
    • /
    • v.4 no.4
    • /
    • pp.267-277
    • /
    • 2008
  • Benzene and ethylbenzene (BE), the volatile organic compounds (VOCs) are common constituents of cleaning and degreasing agents, paints, pesticides, personal care products, gasoline and solvents. VOCs are evaporated at room temperature and most of them exhibit acute and chronic toxicity to human. Chronic exposure of benzene is responsible for myeloid leukemia and also ethylbenzene is also recognized as a possible carcinogen. To evaluate the BE effect on human, whole human genome 35 K oligonucleotide microarray were screened for the identification of the differential expression profiling. We identified 280 up-regulated and 201 down-regulated genes changed by more than 1.5 fold by BE exposure. Functional analysis was carried out by using DAVID bioinformatics software. Clustering of these differentially expressed genes were associated with immune response, cytokine-cytokine receptor interaction, toll-like signaling pathway, small cell lung cancer, immune response, apoptosis, p53 signaling pathway and MAPKKK cascade possibly constituting alternative or subordinate pathways of hematotoxicity and immune toxicity. Gene ontology analysis methods including biological process, cellular components, molecular function and KEGG pathway thus provide a fundamental basis of the molecular pathways through BEs exposure in human lymphoma cells. This may provides a valuable information to do further analysis to explore the mechanism of BE induced hematotoxicity.

CROX (Cluster Regulation of RUNX) as a Potential Novel Therapeutic Approach

  • Kamikubo, Yasuhiko
    • Molecules and Cells
    • /
    • v.43 no.2
    • /
    • pp.198-202
    • /
    • 2020
  • Comprehensive inhibition of RUNX1, RUNX2, and RUNX3 led to marked cell suppression compared with inhibition of RUNX1 alone, clarifying that the RUNX family members are important for proliferation and maintenance of diverse cancers, and "cluster regulation of RUNX (CROX)" is a very effective strategy to suppress cancer cells. Recent studies reported by us and other groups suggested that wild-type RUNX1 is needed for survival and proliferation of certain types of leukemia, lung cancer, gastric cancer, etc. and for their one of metastatic target sites such as born marrow endothelial niche, suggesting that RUNX1 often functions oncogenic manners in cancer cells. In this review, we describe the significance and paradoxical requirement of RUNX1 tumor suppressor in leukemia and even solid cancers based on recent our findings such as "genetic compensation of RUNX family transcription factors (the compensation mechanism for the total level of RUNX family protein expression)", "RUNX1 inhibition-induced inhibitory effects on leukemia cells and on solid cancers through p53 activation", and "autonomous feedback loop of RUNX1-p53-CBFB in acute myeloid leukemia cells". Taken together, these findings identify a crucial role for the RUNX cluster in the maintenance and progression of cancers and suggest that modulation of the RUNX cluster using the pyrrole-imidazole polyamide gene-switch technology is a potential novel therapeutic approach to control cancers.

2-(trimethylammonium)ethyl (R)-3-methoxy-3-oxo-2-stearamidopropyl phosphate enhances thrombopoietin-induced megakaryocytic differentiation and plateletogenesis

  • Kim, Jusong;Jin, Guanghai;Lee, Jisu;Lee, Kyeong;Bae, Yun Soo;Kim, Jaesang
    • BMB Reports
    • /
    • v.52 no.7
    • /
    • pp.434-438
    • /
    • 2019
  • We have previously reported the effects of 2-(trimethylammonium)ethyl (R)-3-methoxy-3-oxo-2-stearamidopropyl phosphate [(R)-TEMOSPho], a synthetic phospholipid, on megakaryocytic differentiation of myeloid leukemia cells. Here, we demonstrate that (R)-TEMOSPho enhances megakaryopoiesis and plateletogenesis from primary hematopoietic stem cells (HSCs) induced by thrombopoietin (TPO). Specifically, we demonstrate at sub-saturation levels of TPO, the addition of (R)-TEMOSPho enhances differentiation and maturation of megakaryocytes (MKs) from murine HSCs derived from fetal liver. Furthermore, we show that production of platelets with (R)-TEMOSPho in combination with TPO is also more efficient than TPO alone and that platelets generated in vitro with these two agents are as functional as those from TPO alone. TPO can thus be partly replaced by or supplemented with (R)-TEMOSPho, and this in turn implies that (R)-TEMOSPho can be useful in efficient platelet production in vitro and potentially be a valuable option in designing cell-based therapy.

Rhus Verniciflua Stokes Extract Suppresses Expression of Metalloproteinases, iNOS and COX-2 in THP-1 Cells Via Inhibiting NF-𝜅B and MAPK Phosphorylation

  • Ko, Hwanjoo;Jang, Eungyeong;Kim, Youngchul
    • The Journal of Korean Medicine
    • /
    • v.41 no.4
    • /
    • pp.12-26
    • /
    • 2020
  • Objectives: The aim of this study is to investigate the mechanisms involved in the anti-inflammatory and anti-tumor effects of Rhus verniciflua Stokes (RVS) on PMA-differentiated human monocytic leukemia THP-1 cells. Methods: Cells were treated with various concentrations of RVS decoction (0-300㎍/ml) for 24, 48, and 72h. Cell viability was evaluated by MTS/PMS assay. The expressions of MMP-2, MMP-9, TIMP-1, TIMP-2, iNOS and COX-2 mRNA and proteins were measured using RT-PCR and western blotting, respectively. Results: RVS suppressed expression of MMP-2 and MMP-9 mRNA. It also down-regulated iNOS and COX-2 mRNA and protein expression. RVS inhibited NF-𝜅B p65 activity and the phosphorylation of Akt and MAPK (ERK and p38 MAPK). Instead, the phosphorylation of JNK is increased at a very low concentration but decreased at higher concentrations. Conclusion: RVS is regarded to inhibit the expression of MMP and TIMP as well as iNOS and COX-2 gene expression via directly inhibiting the activation of NF-𝜅B and phosphorylation of MAPK pathway in THP-1 cells. This suggests RVS have potential to be used as a therapeutic agent for acute myeloid leukemia (AML).

Editorial for Vol. 31, No. 3 (편집자 주: 31권 3호)

  • Kim, Young Hyo
    • Korean journal of aerospace and environmental medicine
    • /
    • v.31 no.3
    • /
    • pp.61-63
    • /
    • 2021
  • In Vol. 31, No. 3, our journal prepared three review articles, an original paper, and two case reports. First, as COVID-19 continues for a long time, aviation workers, including pilots, are also experiencing mental problems such as depression. Therefore, we have compiled the basic principles for improving the mental health of pilots. Next, it is difficult to properly perform cardio-pulmonary resuscitation (CPR) when a cardiac arrest situation occurs in an aircraft. Moreover, in the context of the COVID-19 pandemic, CPR is more difficult because medical staff and other passengers may also be exposed to infections. Therefore, we have summarized the principles of CPR on board and ways to perform CPR while keeping the safety of medical staff and other passengers in the COVID-19 situation. The sudden change of gravity caused by space travel has various effects on the human body, and among them, the effect on the immune system is profound. Therefore, we reviewed the research methods to study the effect of gravity on the immune system and the results. In addition, we analyzed the demographic characteristics and health status of immigrant visa applicants who intended to immigrate to the United States over the past five years. Next, through two case reports, we reported cases of determining physical fitness for aviation service in patients who recovered after receiving appropriate treatment for chronic myeloid leukemia or renal cell carcinoma.

Characterization of Immune Cells From the Lungs of Patients With Chronic Non-Tuberculous Mycobacteria or Pseudomonas aeruginosa Infection

  • Alan R. Schenkel;John D. Mitchell;Carlyne D. Cool;Xiyuan Bai;Steve Groshong;Tilman Koelsch;Deepshikha Verma;Diane Ordway;Edward D. Chan
    • IMMUNE NETWORK
    • /
    • v.22 no.3
    • /
    • pp.27.1-27.13
    • /
    • 2022
  • Little is known of the lung cellular immunophenotypes in patients with non-tuberculous mycobacterial lung disease (NTM-LD). Flow-cytometric analyses for the major myeloid and lymphoid cell subsets were performed in less- and more-diseased areas of surgically resected lungs from six patients with NTM-LD and two with Pseudomonas aeruginosa lung disease (PsA-LD). Lymphocytes, comprised mainly of NK cells, CD4+ and CD8+ T cells, and B cells, accounted for ~60% of all leukocytes, with greater prevalence of T and B cells in more-diseased areas. In contrast, fewer neutrophils were found with decreased number in more-diseased areas. Compared to NTM-LD, lung tissues from patients with PsA-LD demonstrated relatively lower numbers of T and B lymphocytes but similar numbers of NK cells. While this study demonstrated a large influx of lymphocytes into the lungs of patients with chronic NTM-LD, further analyses of their phenotypes are necessary to determine the significance of these findings.

IL-17-Producing Cells in Tumor Immunity: Friends or Foes?

  • Da-Sol Kuen;Byung-Seok Kim;Yeonseok Chung
    • IMMUNE NETWORK
    • /
    • v.20 no.1
    • /
    • pp.6.1-6.20
    • /
    • 2020
  • IL-17 is produced by RAR-related orphan receptor gamma t (RORγt)-expressing cells including Th17 cells, subsets of γδT cells and innate lymphoid cells (ILCs). The biological significance of IL-17-producing cells is well-studied in contexts of inflammation, autoimmunity and host defense against infection. While most of available studies in tumor immunity mainly focused on the role of T-bet-expressing cells, including cytotoxic CD8+ T cells and NK cells, and their exhaustion status, the role of IL-17-producing cells remains poorly understood. While IL-17-producing T-cells were shown to be anti-tumorigenic in adoptive T-cell therapy settings, mice deficient in type 17 genes suggest a protumorigenic potential of IL-17-producing cells. This review discusses the features of IL-17-producing cells, of both lymphocytic and myeloid origins, as well as their suggested pro- and/or anti-tumorigenic functions in an organ-dependent context. Potential therapeutic approaches targeting these cells in the tumor microenvironment will also be discussed.

Current Status and Future Direction of Immunotherapy in Hepatocellular Carcinoma: What Do the Data Suggest?

  • Hye Won Lee;Kyung Joo Cho;Jun Yong Park
    • IMMUNE NETWORK
    • /
    • v.20 no.1
    • /
    • pp.11.1-11.14
    • /
    • 2020
  • Most patients with hepatocellular carcinoma (HCC) are diagnosed at an advanced stage of disease. Until recently, systemic treatment options that showed survival benefits in HCC have been limited to tyrosine kinase inhibitors, antibodies targeting oncogenic signaling pathways or VEGF receptors. The HCC tumor microenvironment is characterized by a dysfunction of the immune system through multiple mechanisms, including accumulation of various immunosuppressive factors, recruitment of regulatory T cells and myeloid-derived suppressor cells, and induction of T cell exhaustion accompanied with the interaction between immune checkpoint ligands and receptors. Immune checkpoint inhibitors (ICIs) have been interfered this interaction and have altered therapeutic landscape of multiple cancer types including HCC. In this review, we discuss the use of anti-PD-1, anti-PD-L1, and anti-CTLA-4 antibodies in the treatment of advanced HCC. However, ICIs as a single agent do not benefit a significant portion of patients. Therefore, various clinical trials are exploring possible synergistic effects of combinations of different ICIs (anti-PD-1/PD-L1 and anti-CTLA-4 antibodies) or ICIs and target agents. Combinations of ICIs with locoregional therapies may also improve therapeutic responses.