• 제목/요약/키워드: Myelin oligodendrocyte glycoprotein

검색결과 10건 처리시간 0.029초

Anti-Myelin Oligodendrocyte Glycoprotein Syndrome with Findings Resembling "Snake-Eye Appearance": a Case Report

  • Hong, Sujin;Yi, Jisook;Lee, Ho-joon;Hahn, Seok;Lim, Yun-jung;Lee, Yedaun;Shin, Kyong Jin
    • Investigative Magnetic Resonance Imaging
    • /
    • 제25권3호
    • /
    • pp.189-192
    • /
    • 2021
  • Anti-myelin oligodendrocyte glycoprotein (anti-MOG) syndrome is an immune-mediated inflammatory condition of the central nervous system, which usually involves spinal cord and optic nerves. Herein, we studied the case of a 57-year-old female patient who presented with acute/subacute symptoms of sphincter dysfunction, paraparesis, and ocular pain. The patient was diagnosed with anti-MOG syndrome with findings resembling snake-eye appearance (SEA), characterized by nearly symmetrical round high signal intensity lesions located at anterior horns (gray matter) on T2-weighted image.

Myelin oligodendrocyte glycoprotein antibody-associated disorders: clinical spectrum, diagnostic evaluation, and treatment options

  • Lee, Yun-Jin;Nam, Sang Ook;Ko, Ara;Kong, JuHyun;Byun, Shin Yun
    • Clinical and Experimental Pediatrics
    • /
    • 제64권3호
    • /
    • pp.103-110
    • /
    • 2021
  • Inflammatory or immune-mediated demyelinating central nervous system (CNS) syndromes include a broad spectrum of clinical phenotype and different overlapping diseases. Antibodies against myelin oligodendrocyte glycoprotein (MOG-Ab) have been found in some cases of these demyelinating diseases, particularly in children. MOG-Ab is associated with a wider clinical phenotype not limited to neuromyelitis optica spectrum disorder, with most patients presenting with optic neuritis, acute disseminated encephalomyelitis (ADEM) or ADEM-like encephalitis with brain demyelinating lesions, and/or myelitis. Using specific cell-based assays, MOG-Ab is becoming a potential biomarker of inflammatory demyelinating disorders of the CNS. A humoral immune reaction against MOG was recently found in monophasic diseases and recurrent/multiphasic clinical progression, particularly in pediatric patients. This review summarizes the data regarding MOG-Ab as an impending biological marker for discriminating between these diverse demyelinating CNS diseases and discusses recent developments, clinical applications, and findings regarding the immunopathogenesis of MOG-Ab-associated disorders.

Myelin Oligodendrocyte Glycoprotein-Associated Disorder로 진단받은 보행장애 환자에 대한 Motion-Style-Acupuncture-Treatment 요법을 포함한 한의학적 치료 효과: 증례보고 (Effects of Korean Medicine Treatment Including Motion-Style-Acupuncture-Treatment for a Gait Disorder Patient with Myelin Oligodendrocyte Glycoprotein-Associated Disorder: A Case Report)

  • 지형욱;김한결;이성민;이한솔;조소현;고일환;김지원;윤정민;정혁진;김시원;박시영;석황우;전준하
    • 한방재활의학과학회지
    • /
    • 제33권4호
    • /
    • pp.215-223
    • /
    • 2023
  • The purpose of this study is to report the effects of Korean medicine treatment on the gait disorder. Patient with myelin oligodendrocyte glycoprotein-associated disorder. We treated the patient using Korean medicine treatment including Motion-Style-Acupuncture-Treatment, pharmacopuncture, acupuncture, and herbal medicine during 30 days. Numerical rating scale (NRS), EuroQol five dimension (EQ-5D) index, Oswestry Disability Index (ODI), Modified Barthel Index (MBI), and the changes of symptoms were measured for assessment. After 30 days inpatient treatment, NRS decreased from 4 to 2, EQ-5D index, ODI, MBI, and the symptoms of the patient also were improved. In conclusion, this case shows Korean medicine treatment might be an effective treatment for gait disorder Patient with MOG-associated disorder.

노화된 흰쥐대뇌 에서 Myelin-Associated Glycoprotein (MAG)의 발현 (Expression of Myelin-Associated Glycoprotein (MAG) in the Aged Rat Cerebrum)

  • 조익현;박창현;이종환;배춘식;예상규;이법이;박승화;고기석;김진석;장병준
    • Applied Microscopy
    • /
    • 제36권2호
    • /
    • pp.101-108
    • /
    • 2006
  • 신경섬유의 수초화의 초기단계에 있어서 마이엘린의 형성에 중요한 역할을 한다고 알려져 있는 마이엘린연합 당단백질(MAG)이 정상적으로 노화된 흰쥐의 대뇌에서도 발현되는지를 알아보고자 하였다. 성숙흰쥐의 대뇌피질에서 MAG가 높은 농도로 발현되었으나 노화흰쥐의 대뇌피질에서는 유의하게 감소하였다. 대뇌에서 MAG면역양성반응 세포는 두 성숙흰쥐의 대뇌피질에서 주로 돌기를 가진 큰 세포였으며 노화흰쥐의 경우에는 주로 세포질과 돌기가 거의 없는 작고 둥근 세포였다. 성숙흰쥐의 백색질내 신경로에서 MAG면역양성 반응 세포는 많이 관찰되었으나 노화흰쥐에서는 거의 관찰되지 않았다. MAG면역반응은 galatocerebroside의 면역반응과 일치하였다. 이상의 결과로부터 노화에 의한 MAG 발현의 변화는 노화시에 나타나는 희소돌기아교세포와 마이엘린 퇴행성 변화와 관계가 있을 뿐만이 아니라 MAG는 노화시에 희소돌기아교세포의 기능 연구를 위한 적절한 marker로서 사용될 수 있음을 의미하며 앞으로 이에 대한 자세한 연구가 필요할 것으로 사료된다.

Oncomodulin/Truncated Protamine-Mediated Nogo-66 Receptor Small Interference RNA Delivery Promotes Axon Regeneration in Retinal Ganglion Cells

  • Cui, Zhili;Kang, Jun;Hu, Dan;Zhou, Jian;Wang, Yusheng
    • Molecules and Cells
    • /
    • 제37권8호
    • /
    • pp.613-619
    • /
    • 2014
  • The optic nerve often suffers regenerative failure after injury, leading to serious visual impairment such as glaucoma. The main inhibitory factors, including Nogo-A, oligodendrocyte myelin glycoprotein, and myelin-associated glycoprotein, exert their inhibitory effects on axonal growth through the same receptor, the Nogo-66 receptor (NgR). Oncomodulin (OM), a calcium-binding protein with a molecular weight of an ~12 kDa, which is secreted from activated macrophages, has been demonstrated to have high and specific affinity for retinal ganglion cells (RGC) and promote greater axonal regeneration than other known polypeptide growth factors. Protamine has been reported to effectively deliver small interference RNA (siRNA) into cells. Accordingly, a fusion protein of OM and truncated protamine (tp) may be used as a vehicle for the delivery of NgR siRNA into RGC for gene therapy. To test this hypothesis, we constructed OM and tp fusion protein (OM/tp) expression vectors. Using the indirect immunofluorescence labeling method, OM/tp fusion proteins were found to have a high affinity for RGC. The gel shift assay showed that the OM/tp fusion proteins retained the capacity to bind to DNA. Using OM/tp fusion proteins as a delivery tool, the siRNA of NgR was effectively transfected into cells and significantly down-regulated NgR expression levels. More importantly, OM/tp-NgR siRNA dramatically promoted axonal growth of RGC compared with the application of OM/tp recombinant protein or NgR siRNA alone in vitro. In addition, OM/tp-NgR siRNA highly elevated intracellular cyclic adenosine monophosphate (cAMP) levels and inhibited activation of the Ras homolog gene family, member A (RhoA). Taken together, our data demonstrated that the recombinant OM/tp fusion proteins retained the functions of both OM and tp, and that OM/tp-NgR siRNA might potentially be used for the treatment of optic nerve injury.

Neuroprotective Effects of 6-Shogaol and Its Metabolite, 6-Paradol, in a Mouse Model of Multiple Sclerosis

  • Sapkota, Arjun;Park, Se Jin;Choi, Ji Woong
    • Biomolecules & Therapeutics
    • /
    • 제27권2호
    • /
    • pp.152-159
    • /
    • 2019
  • Multiple sclerosis (MS) is an autoimmune disease characterized by progressive neuronal loss, neuroinflammation, axonal degeneration, and demyelination. Previous studies have reported that 6-shogaol, a major constituent of ginger (Zingiber officinale rhizome), and its biological metabolite, 6-paradol, have anti-inflammatory and anti-oxidative properties in the central nervous system (CNS). In the present study, we investigated whether 6-shogaol and 6-paradol could ameliorate against experimental autoimmune encephalomyelitis (EAE), a mouse model of MS elicited by myelin oligodendrocyte glycoprotein ($MOG_{35-55}$) peptide immunization with injection of pertussis toxin. Once-daily administration of 6-shogaol and 6-paradol (5 mg/kg/day, p.o.) to symptomatic EAE mice significantly alleviated clinical signs of the disease along with remyelination and reduced cell accumulation in the white matter of spinal cord. Administration of 6-shogaol and 6-paradol into EAE mice markedly reduced astrogliosis and microglial activation as key features of immune responses inside the CNS. Furthermore, administration of these two molecules significantly suppressed expression level of tumor necrosis $factor-{\alpha}$, a major proinflammatory cytokine, in EAE spinal cord. Collectively, these results demonstrate therapeutic efficacy of 6-shogaol or 6-paradol for EAE by reducing neuroinflammatory responses, further indicating the therapeutic potential of these two active ingredients of ginger for MS.

Histopathological evaluation of the lungs in experimental autoimmune encephalomyelitis

  • Sungmoo Hong;Jeongtae Kim;Kyungsook Jung;Meejung Ahn;Changjong Moon;Yoshihiro Nomura;Hiroshi Matsuda;Akane Tanaka;Hyohoon Jeong;Taekyun Shin
    • Journal of Veterinary Science
    • /
    • 제25권3호
    • /
    • pp.35.1-35.13
    • /
    • 2024
  • Importance: Experimental autoimmune encephalomyelitis (EAE) is an animal model of multiple sclerosis characterized by inflammation within the central nervous system. However, inflammation in non-neuronal tissues, including the lungs, has not been fully evaluated. Objective: This study evaluated the inflammatory response in lungs of EAE mice by immunohistochemistry and histochemistry. Methods: Eight adult C57BL/6 mice were injected with myelin oligodendrocyte glycoprotein35-55 to induce the EAE. Lungs and spinal cords were sampled from the experimental mice at the time of sacrifice and used for the western blotting, histochemistry, and immunohistochemistry. Results: Histopathological examination revealed inflammatory lesions in the lungs of EAE mice, characterized by infiltration of myeloperoxidase (MPO)- and galectin-3-positive cells, as determined by immunohistochemistry. Increased numbers of collagen fibers in the lungs of EAE mice were confirmed by histopathological analysis. Western blotting revealed significantly elevated level of osteopontin (OPN), cluster of differentiation 44 (CD44), MPO and galectin-3 in the lungs of EAE mice compared with normal controls (p < 0.05). Immunohistochemical analysis revealed both OPN and CD44 in ionized calcium-binding adapter molecule 1-positive macrophages within the lungs of EAE mice. Conclusions and Relevance: Taken together, these findings suggest that the increased OPN level in lungs of EAE mice led to inflammation; concurrent increases in proinflammatory factors (OPN and galectin-3) caused pulmonary impairment.

자가면역성 뇌척수염을 유도한 C57BL/6 마우스 큰포식세포에서의 Galectin-3의 과발현 (Overexpression of Galectin-3 in Macrophages of C57BL/6 mice with Experimental Autoimmune Encephalomyelitis)

  • 김대승;황인선;박석재;안긴내;박상준;박현정;주홍구;지영흔
    • 대한수의학회지
    • /
    • 제51권2호
    • /
    • pp.139-149
    • /
    • 2011
  • Experimental autoimmune encephalomyelitis (EAE) is an inflammatory disease in the murine central nervous system (CNS) and has long been used as an animal model for human multiple sclerosis. Development of EAE requires coordinated expression of a number of genes that are involved in the activation and effector functions of inflammatory cells. Galectin-3 (Gal-3) is a member of the betagalactoside- binding lectin family and plays an important role in inflammatory responses through its functions on cell activation, cell migration or inhibition of apoptosis. We investigated the functional role of Gal-3 in EAE mice following immunization with myelin oligodendrocyte glycoprotein $(MOG)_{35-55}$ peptide. During the peak stage of EAE, the localization of Gal-3 in inflammatory cells markedly increased in subarachnoid membranes and perivascular regions of CNS. In contrast, Gal-3 was weakly detected in cerebrum and spinal of the recovery stage of EAE. Consistent with this finding, western blot analysis revealed that Gal-3 expression was significantly increased at the peak stage while it was slightly decreased at the recovery stage in the CNS. In addition, the population of $CD11b^{+}$ macrophage expressing Gal- 3 in spleen of EAE mice was markedly increased compared with control mice. In fact, most of activated macrophages isolated from spleen of EAE mice expressed Gal-3. Taken together, our results demonstrate that the over-expression of Gal-3 in activated macrophages may play a key role in promoting inflammatory cells in the CNS during EAE.

모단피의 PC12 cell 산화억제 효과 및 neuronal 유전자 발현 profile 분석에 대한 연구 (Effect of Moutan Cortex Radicis on gene expression profile of differentiated PC12 rat cells oxidative-stressed with hydrogen peroxide)

  • 김현희;노삼웅;나영인;배현수;신민규;김정숙;홍무창
    • 동의생리병리학회지
    • /
    • 제17권2호
    • /
    • pp.529-541
    • /
    • 2003
  • Yukmijihwang-tang has been widely used as an and-aging herbal medicine for hundred years in Asian countries. Numerous studies show that Yukmijihwangtang has anti-oxidative effect both in vivo and in vitro. It has been reported that Moutan Cortex Radicis extract (MCR) was the most effective herb in Yukmijihwang-tang on undifferentiated PC12 cells upon oxidative-stressed with hydrogen peroxide. The purpose of this study is to; 1) evaluate the recovery of neuronal damage by assessing the anti-oxidant effect of MCR on PC12 cells differentiated with nerve growth factor (NGF), 2) identify candidate genes responsible for anti-oxidative effect on differentiated PC12 cells by oligonucleotide chip microarray. PC12 cells, which were differentiated by treating with NGF, were treated without or with hydrogen peroxide in the presence or absence of various concentration of MCR. Cell survival was determined by using MTS assay. Measurement of intracellular reactive oxygen species (ROS) generation was determined using the H2DCFDA assay The viability of cells treated with MCR was significantly recovered from stressed PC12 cell. In addition, wide rage of concentrations of MCR shows dose-dependent inhibitory effect on ROS production in oxidative-stressed cells. Total RNAs of cells without treatment(Control group), only treated with H₂O₂ (stressed group) and treated with both H₂O₂ and of MCR (MCR group) were isolated, and cDNAs was synthesized using oligoT7(dT) primer. The fragmented cRNAs, synthesized from cDNAs, were applied to Affymetrix GeneChip Rat Neurobiology U34 Array. mRNA of Calcium/calmodulin-dependent protein kinase II delta subunit(CaMKII), neuron glucose transporter (GLUT3) and myelin/oligodendrocyte glycoprotein(MOG) were downregulated in Stressed group comparing to Control group. P2X2-5 receptor (P2X2R-5), P2X2-4 receptor (P2X2R-4), c-fos, 25 kDa synaptosomal attachment protein(SNAP-25a) and GLUT3 were downregulated, whereas A2 adenosine receptor (A2AR), cathechol-O-methyltransferase(COMT), glucose transporter 1 (GLUT1), EST223333, heme oxygenase (HO), VGF, UI-R-CO-ja-a-07-0-Ul.s1 and macrophage migration inhibitory factor (MIF) were upregulated in MCA group comparing to Control group. Expression of Putative potassium channel subunit protein (ACK4), P2X2A-5, P2X2A-4, Interferon-gamma inducing factor isoform alpha precursor (IL-18α), EST199031, P2XR, P2X2 purinoceptor isoform e (P2X2R-e), Precursor interleukin 18 (IL-18) were downregulated, whereas MOO, EST223333, GLUT-1, MIF, Neuronatin alpha, UI-R-C0-ja-a-07-0-Ul.s1, A2. adenosine receptor, COMT, neuron-specific enolase (NSE), HO, VGF, A rat novel protein which is expressed with nerve injury (E12625) were upregulated in MCR group comparing to Stressed group. The results suggest that decreased viability and AOS production of PC12 cell by H₂O₂ may be, at lease, mediated by impaired glucose transporter expression. It is implicated that the MCR treatment protect PC12 cell from oxidative stress via following mechanisms; improving glucose transport into the cell, enhancing expression of anti-oxidative genes and protecting from dopamine cytotoxicity by increment of COMT and MIF expression. The list of differentially expressed genes may implicate further insight on the action and mechanism behind the anti-oxidative effects of herbal extract Moutan Cortex Radicis.