• Title/Summary/Keyword: Mycorrhizal

Search Result 250, Processing Time 0.022 seconds

Response of Soil Microbial Communities to Applications of Green Manures in Paddy at an Early Rice-Growing Stage (녹비 시용이 초기 논 토양 미생물군집에 미치는 영향)

  • Kim, Eun-Seok;Lee, Young-Han
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.44 no.2
    • /
    • pp.221-227
    • /
    • 2011
  • Applications of green manures generally improve the soil quality in rice paddy in part through restructuring of soil microbial communities. To determine how different green manures affect soil microbial communities during the early stages of rice growth, fatty acid methyl ester (FAME) profiles were used to the effects of different management practices: 1) conventional farming (CF), 2) no-treatment (NT), 3) Chinese milk vetch (CMV), 4) green barley (GB), and 5) triticale in paddy field. With applications of green manures, soil organic matter was significantly higher than CF, while soil Na concentration was significantly lower compared with CF (p<0.05). Total soil microbial biomass of CMV was higher (p<0.05) than NF by approximately 31%. The highest ratio of monounsaturated fatty acid to saturated fatty acid was found in the GB plot, followed by CMV and triticale compared with CF (p<0.05), possibly indicating that microbial stress was less in GB and CMV plots. Populations of Gram-negative bacteria and arbuscular mycorrhizal fungi also were significantly higher green manures than CF (p<0.05). Our findings suggest that GB should be considered as optimum green manure for enhancing soil microbial community at an early growing stage in paddy field.

Impacts of Soil Organic Matter on Microbial Community of Paddy Soils in Gyeongnam Province

  • Son, Daniel;Sonn, Yeon-Kyu;Weon, Hang-Yeon;Heo, Jae-Young;Kim, Dae-Ho;Choi, Yong-Jo;Lee, Sang-Dae;Ok, Yong Sik;Lee, Young Han
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.49 no.6
    • /
    • pp.783-788
    • /
    • 2016
  • Agricultural management of paddy soil depends on the effects of soil microbial activities. The present study evaluated the soil microbial community of 25 paddy soils in Gyeongnam Province by fatty acid methyl ester (FAME). The average of microbial communities in paddy soils were 32.2% of total bacteria, 16.7% of Gram-negative bacteria, 12.9% of Gram-positive bacteria, 2.0% of actinomycetes, 14.9% of fungi, and 1.3% of arbuscular mycorrhizal fungi. The communities of total bacteria (34.9%) and Gram-negative bacteria (19.4%) in soils with $30{\sim}35g\;kg^{-1}$ of organic matter were significantly larger than those in soils with other organic matter levels. However, soils with $20{\sim}30g\;kg^{-1}$ of organic matter had significantly low ratio of cy17:0 to $16:1{\omega}7c$ and cy19:0 to $18:1{\omega}7c$ as compared with soils with $30{\sim}35g\;kg^{-1}$ of organic matter, indicating microbial stress decreased (p < 0.05). In principal component analyses of soil microbial communities, Gram-negative bacteria should be considered as a potential responsible factor for the obvious microbial community differentiation that was observed between the two different organic matter levels in paddy fields. Thus, soils containing $20{\sim}30g\;kg^{-1}$ of organic matter were responsible for strong effect on microbial biomass and stress in paddy fields.

Ultrastructures of Colletotrichum orbiculare in the Leaves of Cucumber Plants Expressing Induced Systemic Resistance Mediated by Glomus intraradices BEG110

  • Jeun, Yong-Chull;Lee, Yun-Jung;Kim, Ki-Woo;Kim, Su-Jung;Lee, Sang-Woo
    • Mycobiology
    • /
    • v.36 no.4
    • /
    • pp.236-241
    • /
    • 2008
  • The colonization of an arbuscular mycorrhizal fungus Glomus intraradices BEG110 in the soil caused a decrease in disease severity in cucumber plants after fungal inoculation with Colletotrichum orbiculare. In order to illustrate the resistance mechanism mediated by G. intraradices BEG110, infection patterns caused by C. orbiculare in the leaves of cucumber plants and the host cellular responses were characterized. These properties were characterized using transmission electron microscopy on the leaves of cucumber plants grown in soil colonized with G. intraradices BEG110. In the untreated plants, inter- and intra-cellular fungal hyphae were observed throughout the leaf tissues during both the biotrophic and necrotrophic phases of infection. The cytoplasm of fungal hyphae appeared intact during the biotrophic phase, suggesting no defense response against the fungus. However, several typical resistance responses were observed in the plants when treated with G. intraradices BEG110 including the formation of sheaths around the intracellular hyphae or a thickening of host cell walls. These observations suggest that the resistance mediated by G. intraradices BEG110 most often occurs in the symplast of the host cells rather than in the apoplast. In addition, this resistance is similar to those mediated by biotic inducers such as plant growth promoting rhizobacteria.

Occurrence of Vesicular-Arbuscular Mycorrhizal (VAM) Fungi and Their Effect on Plant Growth in Endangered Vegetations

  • Selvaraj, Thangaswamy;Padmanabhan, Chellappan;Jeong, Yu-Jin;Kim, Hoon
    • Journal of Microbiology and Biotechnology
    • /
    • v.14 no.4
    • /
    • pp.885-890
    • /
    • 2004
  • A survey for vesicular-arbuscular mycorrhizae (VAM) occurrence was undertaken in three endangered vegetation sites in the area of Kudankulam atomic power station. Fifteen VAM fungal species were isolated from the root-zone soils of fourteen different plant species. There was a significant correlation observed between the number of spores and of percentage root colonization as exemplified by Phyllanthus niruri and Paspalum vaginatum (450, 95%; 60, 25%). Although VAM species are not known to be strictly site specific, the fact that Acaulospora elegans was observed only in site 1, Glomus pulvinatum in site 2 only, and Gl. intraradices in site 3 only, showed site-specificity in this study. To confirm the infection efficiency, two host plant species in the sites, P. niruri and Eclipta alba, were selected and inoculated in field with three selected VAM fungal spores. Gl. fasciculatum was found to be the most efficient VAM species in percentage root colonization, number of VAM spores, and dry matter content. When the nutrients in roots of P. niruri and E. alba were analyzed, there was higher uptake of K (4.2 and 3.4 times, respectively) and Ca (5.3 and 4.9 times, respectively), the analogues for $^{137}Cs$ and $^{90}Sr$, respectively. From the results, it might be concluded that VAM association helps the plants survive in a disturbed ecosystem and enhances uptake and cycling of radionuclides from the ecosystem.

Effects of Electrical Conductivity on the Soil Microbial Community in a Controled Horticultural Land for Strawberry Cultivation (시설딸기재배지 토양에서 염류농도가 미생물 생태에 미치는 영향)

  • Lee, Young-Han;Ahn, Byung-Koo;Sonn, Yeon-Kyu
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.44 no.5
    • /
    • pp.830-835
    • /
    • 2011
  • Total soil microbial activities have great impact to soil management for organic farming. This study was evaluated in the soil microbial community by fatty acid methyl ester (FAME) in a controlled horticultural field for strawberry organic farm. Experimental plots were prepared with a high level of soil electrical conductivity (EC) and a optimum level of soil EC. Soil microbial biomasses and communities of total bacteria, Gram-negative bacteria, Gram-positive bacteria, actinomycetes, fungi, and arbuscular mycorrhizal fungi in the high level of soil EC were significantly larger than those in the optimum level of soil EC. Lower ratios of cy17:0 to 16:$1{\omega}7c$ and cy19:0 to 18:$1{\omega}7c$ were found in the optimum level of soil EC than those in the high level of soil EC, indicating that microbial stress decreased.

Succession and Stand Dimension Attributes of Pinus thunbergii Coastal Forests after Damage from Diplodia Tip Blight around the Sakurajima Volcano, Southern Kyushu, Japan

  • Teramoto, Yukiyoshi;Shimokawa, Etsuro;Ezaki, Tsugio;Jang, Su-Jin;Kim, Suk-Woo;Lee, Youn-Tae;Chun, Kun-Woo
    • Journal of Forest and Environmental Science
    • /
    • v.34 no.6
    • /
    • pp.481-489
    • /
    • 2018
  • In this study, the succession and stand dimension attributes related to the disaster prevention function of Pinus thunbergii coastal forests were examined after damage from Diplodia tip blight. In 2015, 101 years after the Taisho eruption, field investigations were performed on the vegetation, soil thickness, and pH of surface soil of P. thunbergii coastal forests in western Sakurajima (Hakamagoshi plot) and Taisho lava flows in southeastern Sakurajima (Seto plot). The Hakamagoshi plot had more woody plant species with larger basal areas than that in the Seto plot. The mean age and height, maximal age and height of plant species, and H/D ratio were all larger in the Hakamagoshi plot than in the Seto plot. These results may be explained by the relatively smaller effect of volcanic ash and gas on forests in the Hakamagoshi plot compared to the Seto plot, resulting in a more suitable environment for many plant species. Although P. thunbergii coastal forests in Sakurajima are currently recovering from damages owing to Diplodia tip blight, there has not yet been a sufficient recovery compared to the results from a 1997 study. Furthermore, the results of assessment based on the H/D ratio and abundance of trees in P. thunbergii forests indicate that both regions are not yet effective in disaster prevention. Thus, it is necessary to establish Pinus trees, which can adjust to harsh environments like coastal areas and are resistant to volcanic ash and gas, to enhance the disaster prevention function of P. thunbergii coastal forests in volcanic regions. It may also be helpful to establish coastal forests with ectotrophic mycorrhizal fungi and organic matter coverage. Additionally, it is necessary to ensure the continuous maintenance of stand density and soil quality, and further develop efforts to prevent Diplodia tip blight and promote forest recovery.

A Ten-Year Result of Artificial Inoculation of Pines with Ectomycorrhizal Fungi, Pisolithus tinctorius and Thelephora terrestris (묘포장(苗圃場)에서 균근균(菌根菌)으로 인공접종(人工接種)한 5개(個) 소나무류(類)의 접종(接種) 10년후(年後) 조림지(造林地)에서의 생장효과(生長效果))

  • Lee, Kyung Joon
    • Journal of Korean Society of Forest Science
    • /
    • v.81 no.2
    • /
    • pp.156-163
    • /
    • 1992
  • Pinus koraiensis (Pk), P. rigida (Pr) and P. rigida ${\times}$ P. taeda (Pr. t) seedlings in a bare-rooted nursery were artificially inoculated with Pisolithus tinctorius (Pt) and Thelephora terrestris (Tt) to test long term effects of ectomycorrhizal inoculation on host growth. Mycelial inocula of Pt and Tt were mass-cultured in vermiculite-peatmoss mixture and introduced into fumigated nursery soil before seed sowing. Bare-rooted, inoculated seedlings at one to four years of age were outplanted to the field with $P_2O_5$ content of 25 ppm in soil. At the time of outplanting, Pk seedlings(4 years old), Pr seedlings(2 years old), and Pr.t seedlings(1 year old) all infected by Pt were significantly taller by 28%. 26%, and 77%, respectively, than controlled seedlings infected by natural population of mycorrhizal fungi in the non-fumigated plot. Ten years after inoculation or six to nine years after outplanting, Pk seedlings inoculated with Pt were significantly taller by 9% Pr.t seedlings significantly taller by 18%, and Pr slightly Caller by 2%(not significant) than controlled seedlings, suggesting that the stimulatory effect of Pt on host growth gradually declined or became minimal after outplanting. Tt failed to stimulate host growth either in the nursery or in the field, and the survival rate of outplanted seedlings was not different among fungal treatments. Considerable loss of the infected root system during lifting the seedlings for outplanting would be the primary cause of the reduced effect of Pt in the field. Pt infected more than 90% of the fine roots in the fumigated nursery during the first growing season, but Pt assumed to fail to compete successfully with natural population of ectomycorrhizal fungi in the field. It is necessary to select other mycorrhizal fungi which adapt well in both nursery and field.

  • PDF

Effects of Orchid Mycorrhizal Fungi on the Growth of Cymbidium kanran and Phalaenopsis (난 균근균 처리가 한란과 호접란의 생육에 미치는 영향)

  • Yun, Jong Sun;Park, Kyoung Ryeo;Shin, Se Kyun;Kim, Ik Hwan;Lee, Cheol Hee;Choi, Kwan Soon;Lee, Sang Sun
    • Horticultural Science & Technology
    • /
    • v.17 no.5
    • /
    • pp.578-580
    • /
    • 1999
  • The effects of the orchid mycorrhizal fungi isolated from Cymbidium goeringii were investigated on the growth of orchid plants. The plants, a hybrid of Cymbidium kanran Jeju${\times}$C. kanran Nangoku and Phalaenopsis were inoculated with the fungal isolates of Rhizoctonia repens (P1), R. endophytica (P2) and R. repens (P3; different from P1) on the oatmeal agars for two months. Then the orchid plants were cultivated in the greenhouse for eighteen months. The difference of plant growth after cocultivation for two months was not found among the treatments. After cultivation for four months, the growth of hybrid plants of Cymbidium kanran Jeju${\times}$C. kanran Nangoku was observed to be distinguished in the Rhizoctonia repens (P1). After cultivation in the greenhouse for eighteen months, the plant height, the number of shoots, the number of leaves, the number of roots and plant fresh weight of the hybrid of Cymbidium kanran Jeju${\times}$C. kanran Nangoku, inoculated with Rhizoctonia repens (P1), were significantly increased compared to those of the control. The plants inoculated with Rhizoctonia repens (P3) were not different and the plants inoculated with R. endophytica were poor compared to the control. The plant height and fresh weight of the Phalaenopsis, inoculated with Rhizoctonia repens (P1), increased significantly compared to those of the control. Overall, Rhizoctonia repens (P1), was the most effective for the growth of a hybrid of Cymbidium kanran Jeju${\times}$C. kanran Nangoku.

  • PDF

Effects of Herbicides on the Growth, Nodulation and VA Mycorrhizal Infection in Soybean (Glycine max) (제초제(除草劑) 처리(處理)가 콩 생육(生育) 및 근류균(根瘤菌) 착생(着生)과 VA 균근균(菌根菌) 감염(感染)에 미치는 영향(影響))

  • Yoon, C.S.;Huh, S.M.;Shon, B.K.
    • Korean Journal of Weed Science
    • /
    • v.12 no.1
    • /
    • pp.16-30
    • /
    • 1992
  • A field experiment was done to evaluate the growth response, rhizobia nodulation and vesicular-arbuscular mycorrhizal fungi (VAMF) infection of soybean treated with the different concentration of three-herbicides, alachlor, simazine, linuron. The results obtained were summarized as follows ; Emergence rate of soybean was non-significantly decreased by increasing the herbicide concentration. In simazine treatment, low emergence rate showed even in recommended concentration, especially the lowest emergence rate in treble concentration of recommended dose was about 50%. The plant length of soybean lowered by increasing the herbicide concentration, but there were almost no differences in recommended dose. Particularly that in a high concentration of herbicides at three weeks after treatment(WAT) was decreased remarkably. In the plant diameter of soybean shoot, no differences in the recommended concentration of alachlor and linuron at 2 WAT, but those of recommended dose was decreased with the lapse of time, and the lowest treatment was simazine-treated plot. Leaf area and fresh weight of soybean tended to decrease over the control even in recommended concentration and it was decreased with the increment of the herbicide dose. Yield component, fresh weight of rhizobia nodule and chlorophyll content of soybean leaves were reduced with the increment of herbicide dose, espicially remarkable tendency was revealed in simazine-treated plot. Seasonal infection rate of VAM showed a slight decrease by increasing of herbicide dose, and the lowest infection was simazine treatment. Significant correlation was realized among the reduction of rhizobia nodulation, VAM colonization and the agronomic characters of soybean and it was considered that the reduction of rhizobia nodulation and VAM colonization by misapplication of the herbicides might be a causal factor for decrease in soybean yield.

  • PDF

Effect of Thinning on Environmental Factors and Wild Mushroom Fruting in Quercus mongolica Forest (신갈나무림에서 솎아베기가 임내환경과 자연버섯 발생에 미치는 영향)

  • Park, Yong Woo;Koo, Chang Duck;Choi, Hyun Bin;Kim, Jin Gun;Lee, Hee Su;Lee, Hwa Yong
    • Journal of Korean Society of Forest Science
    • /
    • v.107 no.1
    • /
    • pp.1-15
    • /
    • 2018
  • In order to determine the effects of thinning on mushroom fruiting, microclimate and air temperature in Quercus mongolica forests, this study investigated changes in crown density, soil temperature, air temperature and throughfall in the natural Q. mongolica forest which was thinned by approximately 45% four years ago. The results showed that crown density was smaller than control by 6% from April to October, The soil temperature and air temperature in the thinned stands were significantly higher than those of the control by $1{\sim}2^{\circ}C$ until August and differences in air and soil temperature. The average daily temperature difference was higher than control by $0.2{\sim}0.7^{\circ}C$ until October. Throughfall from July to September in the thinned was approximately 135 mm higher than in the control. The maximum difference in throughfall per unit time was 3.5 mm/h. Soil moisture in the thinned site increased by approximately 5% compared with the control and reduced to the normal moisture after 4 days in both sites. 55 mushroom species were found in the thinned area between July and September. The thinned site contained 10 mycorrhizal mushrooms more than the control and 1 saprophytic mushroom species more than the control. Shannon-Wiener Index was 3.2, approximately 0.5 higher than the control. Tylopilus neofelleus, etc., occurred in the thinned site more quickly, but Aaricus subrutilescens, Clitocybe sp, occurred later. In the thinned site, the dominance of Tylopilus neofellelus and Armillaria sp. increased approximately 6% and 30% and yield about 1.5 times and 20 times, respectively. In conclusion, thinning in the Q. mongolica forest increased the soil and air temperature, soil moisture, throughfall and the diversity of mushroom species, and advanced the period of occurrence, and increased dominance and yield of some mycorrhizal mushrooms and Amillaria sp.