• Title/Summary/Keyword: Mycelial inhibition

Search Result 222, Processing Time 0.025 seconds

Correlative Production of Mn-Peroxidase and Glucose Oxidase Depending on the Culture Condition of Schizopora paradoxa (좀구멍버섯균의 배양조건에 따른 Mn-Peroxidase와 Glucose Oxidase의 생성조절)

  • Lee, Sang-Yoon;Shin, Hyeon-Dong;Kim, Kyu-Joong
    • The Korean Journal of Mycology
    • /
    • v.22 no.4
    • /
    • pp.325-331
    • /
    • 1994
  • White-rot fungus, Schizopora paradoxa did not produce Mn-peroxidase and glucose oxidase without manganese. But, in high concentration of manganese (40 ppm), the activities of both enzymes were higher than those in basal concentration of manganese (11.15 ppm). Unlike the activities of the enzymes, mycelial mass was the same level as the control culture (11.15 ppm manganese) through out the culture period, depending on the concentration of manganese. The same experiments were carried out for the effect of copper and veratryl alcohol added to the culture. The results were not consistent dependent on the concentration of copper and veratryl alcohol, respectively. The involvement of cAMP in the correlative production of MNP and GOX was investigated. In this study, addition of atropine to the culture resulted in a concomitant inhibition of production of MNP and GOX, depending on the concentration of inhibitor added.

  • PDF

Antifungal activity of pinosylvin from Pinus densiflora on turfgrass fungal diseases

  • Lee, Dong Gu;Lee, Seong Jun;Rodriguez, Joyce P.;Kim, Ik Hwi;Chang, Taehyun;Lee, Sanghyun
    • Journal of Applied Biological Chemistry
    • /
    • v.60 no.3
    • /
    • pp.213-218
    • /
    • 2017
  • The objective was to examine the antifungal activity of Pinus densiflora extract for the control of turfgrass fungal diseases. Antifungal activities of the various fractions of n-hexane, methylene chloride (Ch), ethyl acetate (EtOAc), and n-butanol from P. densiflora were evaluated against Rhizoctonia solani AG1-1B, R. solani AG2-2IV, Sclerotinia homoeocarpa, R. cerealis, Pythium spp., and Colletotrichum graminicola. The Ch and EtOAc fractions showed antifungal activity against Pythium sp. and C. graminicola in paper disc assay. The effective concentration to produce 50% mycelial inhibition ($EC_{50}$) using five discriminatory concentrations of pinosylvin (1) from the Ch fraction of P. densiflora was evaluated on R. solani AG1-1B, R. solani AG2-2IV, R. cerealis, and S. homoeocarpa. S. homoeocarpa showed the highest sensitivity with the lowest mean $EC_{50}$ value ($8.426{\mu}g/mL$) among the four pathogens. Among the three Rhizoctonia pathogens, R. cerealis had the highest mean $EC_{50}$ value ($99.832{\mu}g/mL$) and R. solani AG2-2IV, with the lowest sensitivity, had the lowest $EC_{50}$ value ($39.696{\mu}g/mL$). These results suggested that pinosylvin (1) from P. densiflora could be a valuable lead compound in the improvement of a novel antifungal agent.

In vitro Biofumigation of Brassica Tissues Against Potato Stem Rot Caused by Sclerotinia sclerotiorum

  • Ojaghian, Mohammad Reza;Jiang, Heng;Xie, Guan-Lin;Cui, Zhou-Qi;Zhang, Jingze;Li, Bin
    • The Plant Pathology Journal
    • /
    • v.28 no.2
    • /
    • pp.185-190
    • /
    • 2012
  • Sclerotinia sclerotiorum is a serious pathogen which causes yield loss in many dicotyledonous crops including potato. The objective of this study was to assess the potential of biofumigation using three Brassica crops including Brassica napus, B. juncea and B. campestris against potato stem rot caused by S. sclerotiorum by in vitro tests. Both macerated and irradiated dried tissues were able to reduce radial growth and sclerotia formation of five pathogen isolates on PDA, but macerated live tissues were more effective. Compared with other tested crops, B. juncea showed more inhibitory effect against the pathogen. The volatile compounds produced from macerated tissues were identified using a gas chromatograph-mass spectrometer. The main identified compounds were methyl, allyl and butyl isothiocyanates. Different concentrations of these compounds inhibited mycelial growth of the pathogen in vitro when applied as the vapor of pure chemicals. A negative relationship was observed between chemicals concentrations and growth inhibition percentage. In this study, it became clear that the tissues of local Brassica crops release glucosinolates and have a good potential to be used against the pathogen in field examinations.

Antifungal Effect of Plant Essential Oils on Controlling Phytophthora Species

  • Amini, Jahanshir;Farhang, Vahid;Javadi, Taimoor;Nazemi, Javad
    • The Plant Pathology Journal
    • /
    • v.32 no.1
    • /
    • pp.16-24
    • /
    • 2016
  • In this study, antifungal activity of essential oils of Cymbopogon citratus and Ocimum basilicum and two fungicides Mancozeb and Metalaxyl-Mancozeb in six different concentrations were investigated for controlling three species of Phytophthora, including P. capsici, P. drechsleri and P. melonis on pepper, cucumber and melon under in vitro and greenhouse conditions, respectively. Under the in vitro condition, the median effective concen- tration ($EC_{50}$) values (ppm) of plant essential oils and fungicides were measured. In greenhouse, soil infested with Phytophthora species was treated by adding 50 ml of essential oils and fungicides (100 ppm). Disease severity was determined after 28 days. Among two tested plant essential oils, C. citratus had the lowest $EC_{50}$ values for inhibition of the mycelial growth of P. capsici (31.473), P. melonis (33.097) and P. drechsleri (69.112), respectively. The mean $EC_{50}$ values for Metalaxyl-Mancozeb on these pathogens were 20.87, 20.06 and 17.70, respectively. Chemical analysis of plant essential oils by GC-MS showed that, among 42 compounds identified from C. citratus, two compounds ${\beta}$-geranial (${\alpha}$-citral) (39.16%) and z-citral (30.95%) were the most abundant. Under the greenhouse condition, Metalaxyl-Mancozeb caused the greatest reduction in disease severity, 84.2%, 86.8% and 92.1% on melon, cucumber, and pepper, respectively. The C. citratus essential oil reduced disease severity from 47.4% to 60.5% compared to the untreated control ($p{\leq}0.05$). Essential oils of O. basilicum had the lowest effects on the pathogens under in vitro and greenhouse conditions. These results show that essential oils may contribute to the development of new antifungal agents to protect the crops from Phytophthora diseases.

Biocontrol Characteristics of Bacillus Species in Suppressing Stem Rot of Grafted Cactus Caused by Bipolaris cactivora

  • Bae, Sooil;Kim, Sang Gyu;Kim, Young Ho
    • The Plant Pathology Journal
    • /
    • v.29 no.1
    • /
    • pp.42-51
    • /
    • 2013
  • One of the most important limiting factors for the production of the grafted cactus in Korea is the qualitative and quantitative yield loss derived from stem rots especially caused by Bipolaris cactivora. This study is aimed to develop microbial control agents useful for the control of the bipolaris stem rot. Two bacteria (GA1-23 and GA4-4) selected out of 943 microbial isolates because of their strong antibiotic activity against B. cactivora were identified as Bacillus subtilis and B. amyloliquefaciens, respectively, by the cultural characteristics, Biolog program and 16S rRNA sequencing analyses. Both bacterial isolates significantly inhibited the conidial germination and mycelial growth of the pathogen with no significant difference between the two, of which the inhibitory efficacies varied depending on the cultural conditions such as temperature, nutritional compositions and concentrations. Light and electron microscopy of the pathogen treated with the bacterial isolates showed the inhibition of spore germination with initial malformation of germ tubes and later formation of circle-like vesicles with no hyphal growth and hyphal disruption sometimes accompanied by hyphal swellings and shrinkages adjacent to the bacteria, suggesting their antibiotic mode of antagonistic activity. Control efficacy of B. subtilis GA1-23 and B. amyloliquefaciens GA4-4 on the cactus stem rot were not as high as but comparable to that of fungicide difenoconazole when they were treated simultaneously at the time of pathogen inoculation. All of these results suggest the two bacterial isolates have a good potential to be developed as biocontrol agents for the bipolaris stem rot of the grafted cactus.

Development of Biofugicide for Control of Gray Mole Rot of Eggplant Caused by Botrytis cinerea, and Bioassay in the Greenhouse Condition (가지 잿빛공팜이병 방제용 생물농약 개발 및 방제효과)

  • 김철승;이재필;송주희;임은경;정순재;하상영;문병주
    • Journal of Life Science
    • /
    • v.11 no.3
    • /
    • pp.235-241
    • /
    • 2001
  • To select the sntagonistic bacteria against B. cinerea, isolates were screened from the eggplant leaves and rhizosphere soils in the eggplnat fields in the greenhouse. W1 and P99 isolates were selected by the inhibition of mycelial growth of B. cinerea E12 in vitro test. These isolates, W1 and P99, were identified as Bacillus subtilis and Pseudomonas putida, respectively, by the Bergeys manual and API systems, For the formulation of the antagonistic bacteria, the media for the mass production were prepared with biji(soybean curd residues) or soybean flour. B. subtilis W1 or P. putida P99 was mass cultured in biji broth or soybean flour extrect broth and then soybean flour, corn starch flour, rice glutinous flour and biji flour as high molecular substrates were added. These mixtures were dried, grinded and formulated as brofungicides of wettable powder type. The assess the control effect of biofungicides against the infection of B. cinerea, six types of formulations were assayed at the pot culturing with eggplant in the greenhouse. According to the results, there were no significant differences among the formulation methods. However, P99S or PppB formulated with P. putida P99 showed the highest control values as 90.4% and 96.1%, respectively. Then. BSB or BSD formulated whit B. subtilis W1 were 80.8% and 83.0%, respectively. There afforementioned values were more effective than that of chemical fungicide. Ipro W.P which showed as 72.6%.

  • PDF

Antagonistic activity of Streptomyces apecies against Fusarium solani causing ginseng root rot (인삼뿌리 썩음 병균 Fusarium solane에 대한 Streptomyces species의 길한작용)

  • 정영륜;오승환;정후섭
    • Korean Journal of Microbiology
    • /
    • v.27 no.1
    • /
    • pp.56-62
    • /
    • 1989
  • Antagonistic effects of Streptomyces species aganinst Fusarium solani causing ginseng root rot were investigated in terms of chitinase activity and growth inhibition in vitro. Among 131 isolates of streptomycetes obtained from ginseng cultivating soil, 9 isolates producing large clear zone around the colony on a chitin agar medium were selected for further study. All 9 isolates produced chitinase in a range from 0.10 to 0.38 U lysing cells of F. solani and inhibited germination of the conidia. In the ten-fold condentrated culture filtrate of S. alboniger ST59 and S. roseolilacinus ST129, the number of conidia of F. solane was reduced to about 20% of original count within 14 days. When S. alboniger ST59 and F. solani were grown simultaneously in the mineral saly medium, chitinase activity increased with incubation period, whereas mycelial volume of F. solani decreased. In a chitin added mineral salt medium, chitinase activity increased during the first four days and maintained steady level until the 8th day, and increased thereafter. S. alboniger ST59 lysed mycelia, conidia and even chlamydospores of F. solani. It is probable that the antagonistic activity of this streptomycete against F. solani is the lysis of fungal cell wall by streptomycete producing chitinase affected by antifungal substances.

  • PDF

Fungicide Screening for Control of Summer Spinach Damping-off Caused by Rhizoctonia solani (Rhizoctonia solani에 의한 여름 시금치 잘록병의 방제를 위한 살균제 선발)

  • Kim, Byung-Sup;Yun, Yue-Sun;Yun, Choel-Soo;Zhang, Xuan-Zhe;Yeoung, Young-Rog;Hong, Sae-Jin
    • The Korean Journal of Pesticide Science
    • /
    • v.9 no.1
    • /
    • pp.35-40
    • /
    • 2005
  • Damping-off of summer spinach caused by Rhizoctonia solani AG-4 has become a very important disease. For the control of summer spinach damping-off, antifungal activity of thirteen fungicides (pencycuron, trifloxystrobin, pyraclostrobin, azoxystrobin, kresoxim-methyl, validamycin, fluazinam, Benlate-T, flutolanil, cyazofamid, hexaconazole, tebuconazole, prochloraz) were evaluated in vitro and in vivo. Pencycuron, pyraclostrobin, validamycin, fluazinam, Benlate-T, hexaconazole, tebuconazole, and flutolanil significantly suppressed the mycelial growth of the pathogenic fungus. However, trifloxystrobin, azoxystrobia kresoxim-methyl, cyazofamid, and prochloraz did not represent good inhibition on the growth of R. solani. When applied by soil drenching (2,000 mg/L), pencycuron, pyraclostrobin, validamycin, fluazinam, Benlate-T, and flutolanil provided spinach survival ratios of 97.8%, 84.4%, 93.3%, 95.6%, 91.1%, and 86.7%, respectively. Also when treated in seed at 2,000 ing/L, pencycuron and pyraclostrobin displayed survival ratios of more than 85.1%.

Overproduction of Sodium Gluconate Using the Recombinant Aspergillus niger (재조합 Aspergillus niger에 의한 글루콘산나트륨의 산업적 생산)

  • 이선희;이현철;김대혁;양문식;정봉우
    • KSBB Journal
    • /
    • v.13 no.2
    • /
    • pp.214-219
    • /
    • 1998
  • Polymerase chain reaction(PCR) was conducted to obtain the gene encoding glucose oxidase(GOD) from Aspergillus niger(ATCC 2110) and the DNA sequence determined was coincided with published GOD sequence from A. niger. Recombinant transforming vector containing GOD and hygromycin B(hyg.B) resistant gene(hph) was constructed and used for further transformation of A. niger ATCC 2110. Selectivity of hyg.B against A. niger differed depending on which media were used i.e., nutrient-rich media such as potato dextrose agar(PDA) and complete medium(CM) showed only 50% growth inhibition at 400 $\mu$m ml$^-1$ of hyg.B while the minimal media inhibited mycelial growth completely at 200 $\mu$m ml$^-1$ of hyg.B. Twenty to sixty putative transformants were isolated from the hyg.B-containing minimal top agar, transferred successively onto alternating selective and nonselective media for a mitotic stability of hyg.B resistance and, then, single-spored. Among the stable transformants, the transformant(GOD1-6) grown by flask culture showed the considerable increase of extracellular GOD activity, which was estimated to the degree of 50% - 100% comparing to that of wild type. Transformation of tGOD1-6 was resulted from integration of the vectors into heterologous as well as homologous regions of the A. niger genome. Southern blot analysis revealed that there were two independent integrations of vector into fungal genome and one into the GOD gene due to homologous recombination. In addition, GOD activity and sodium gluconate production when tGOD1-6 was fed-batch fermented were enhanced 11 fold and 2.25 fold, respectively, compared to that of the wild type.

  • PDF

Studies on Constituents of the Higher Fungi of Korea(XLI) -An Antitumor Fraction from the Culture Filtrate of Lentinus edodes DMC7- (한국산(韓國産) 고등(高等) 균류(菌類)의 성분(成分) 연구(硏究)(제41보)(第41報) -Lentinus edodes DMC7 균주(菌株)의 배양(培養) 여액(濾液)의 항암(抗癌) 성분(成分)-)

  • Chung, Kyeong-Soo;Choi, Eung-Chil;Kim, Byong-Kak
    • The Korean Journal of Mycology
    • /
    • v.12 no.4
    • /
    • pp.129-132
    • /
    • 1984
  • To find antitumor constituents in Korean basidiomycetes, the mycelia of Lentinus edodes DMC7, which had shown a good mycelial growth in shakeflasks, were cultured at $27^{\circ}C$ on an orbital shaking incubator at 180 rev/min for 12 days. The medium was composed of glucose (50g/l), yeast extract (9g/l), peptone (9g/l), and seven inorganic salts. A water soluble macromolecular fraction, LF-3, was obtained from the culure filtrate by fractionation with ethanol and dialysis using a Visking tube. When LF-3 was administered i.p. at 50mg/kg/day once daily for 10 consecutive days to female ICR mice which were implanted s.c. with sarcoma 180 $(10^6\;cells/mouse)$, it exerted a highly significant antitumor activity, with the tumor inhibition ratio of 53. 1%.

  • PDF