• Title/Summary/Keyword: Mycelial growth inhibion

Search Result 1, Processing Time 0.017 seconds

Synthesis of Pyto-patch as Silver Nanoparticle Product and Antimicrobial Activity (은나노 제품인 Pyto-patch의 제조공정 및 Pyto-patch의 고추 탄저병 방제효과)

  • Kwak, Young-Ki;Kim, Seong-Il;Lee, Jong-Man;Kim, Il-Seop
    • Journal of Bio-Environment Control
    • /
    • v.21 no.2
    • /
    • pp.140-146
    • /
    • 2012
  • The commercial product "pyto-patch" prepared as nano sized silver particle less than 5 nm, has effective antifungal activity against Collectotrichum gloeosporioides, Botrytis cinerea, Sclerotinia sclerotiorum in vitro. As a fungal growth inhibiton mechanism, it can reduce spore germination rate and mycelial growth. As s promising fungicide, Phyto-patch can control anthracnose effectively. The spore of C. gloeosporioides dipped in 5 ppm phyto-patch dilute suppressed germination rate to 13.2%, and mycelial growth stopped for 15 days at 10 ppm. The spore postinoculated on 10 ppm phyto-path smeared PDA surface could not germinate for 3 days and prohibit pathogen infection effectively. In field test, the anthracnose development of 4 ppm phyto-patch treated plot was less than 7% after 21 days compaired to 40% of it in untreated plot. In heavy rainfall season, pepper anthracnose effectivly contrrolled by regular 10 ppm phytopatch spraying every 7 days. The diseased pepper fruit decreased to 5.8% compaired to 94.6% in untreated plot. During drying period, the diseased pepper fruit havested in phyto-patch treated plot was 24.2%, but pepper fruit havested in untreated plot destroyed to 100% within 3 days. The nano silver particle coated on multching textile prevented late blight of pepper effectively and disease occurance delayed about month.