• Title/Summary/Keyword: Mutual coupling

Search Result 193, Processing Time 0.024 seconds

A SIW Fed Antipodal Linear Tapered Slot Planar Multi-Beam Antenna for Millimeter-Wave Application

  • Zhang, Yingsong;Hong, Wei;Kuai, Zhenqi
    • Journal of electromagnetic engineering and science
    • /
    • v.10 no.3
    • /
    • pp.175-178
    • /
    • 2010
  • In this paper, a millimeter-wave multi-beam antenna is studied by rotating the antipodal linear tapered slot antenna(ALTSA) with respect to a center is successfully designed. In order to lowering the SLL and enhancing the isolation between the ALTSA elements, a row of metallic via is inserted between the ALTSAs. A 9 beams antenna is designed and experimented at Ka band. The measured and simulated results agree well with each other. The antenna can provide horizontal wide angle coverage up to ${\pm}62^{\circ}$. The gain of each beam can achieve about 12.5 dB. The mutual coupling between ports is all below 20 dB.

Antenna Array Calibration for Digital Beamforming (디지털 빔 형성을 위한 배열 안테나 오차 보정)

  • Choi, Hee-Young;Park, Hyung-Geun;Kim, Young-Soo
    • Proceedings of the Korea Electromagnetic Engineering Society Conference
    • /
    • 2003.11a
    • /
    • pp.501-505
    • /
    • 2003
  • There are many antenna array errors. They will distort the array beam pattern and result in an increased sidelobe level. A calibration technique is proposed for correcting the antenna array errors such as mutual coupling and unequal feeder characteristics. These are modeled as a matrix representing the interaction between the radiating elements. The matrix is estimated from the measured array response vectors. The antenna array errors are corrected by modifying the beamforming weight vector. It is verified by the electromagnetic simulation and experiment that the proposed technique reduces the sidelobe level and increases the antenna gain.

  • PDF

A New fault Location Algorithm for 765㎸ Untransposed Parallel Transmission Lines (765㎸ 비연가 송전선로에서 고장점 표정 알고리즘)

  • 안용진;강상희
    • The Transactions of the Korean Institute of Electrical Engineers A
    • /
    • v.53 no.3
    • /
    • pp.168-174
    • /
    • 2004
  • This paper describes a new fault location algorithm based on the voltage equation at the relaying point using 6-phase current for untransposed 765㎸ parallel transmission lines. The proposed method uses the voltage and current collected at only the local end. By means of 3-phase circuit analysis theory to compensate the mutual coupling effects between parallel lines, the fault location is derived. The fault distance is determined by solving the 2nd distance equation based on KVL(Kirchhoff's Voltage Law). Extensive simulation results using EMTP(Electromagnatic Transients Program) have verified that the error of the fault location achieved is up to 4.56(%) in untransposed parallel transmission lines.

Analysis of aperture coupled stacked microstrip array antenna (슬롯결합 적층 마이크로스트립 배열 안테나 해석)

  • 장병준;이용국;문호원;윤영중;박한규
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.21 no.3
    • /
    • pp.753-762
    • /
    • 1996
  • In this paper, aperture coupled stacked microstrip array antennas are proposed and their operating characteristics are analyzed based on analytical. In order to evaluate mutual coupling between slot-coupled microstrip patches in finite array, analysis uses the reciprocity theorem and the spectral domain Green's functions for dielectric slab in a moment method solution for the unknown patches and solts current distrbution. By introducing an N-port equivalent network, the impedance matrix of an affay of N-element slot-coupled patches is evaluated directly from its network current matix of order N$^{2}$, and it can be programmed to be run on a PC. Numerical results show mutual coupling, radiation pattern, active reflection coefficient versus scan angle, radiation efficiency and active element gain pattern.

  • PDF

Antenna Array Calibration for Digital Beamforming (디지털 빔 형성을 위한 배열 안테나 오차 보정)

  • 최희영;박형근;김영수;방승찬
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.15 no.2
    • /
    • pp.199-205
    • /
    • 2004
  • There are many antenna array errors. They will distort the array beam pattern and result in an increased sidelobe level. A calibration technique is proposed for correcting the antenna array errors such as mutual coupling and unequal feeder characteristics. These are modeled as a matrix representing the interaction between the radiating elements. The matrix is estimated from the measured array response vectors. The antenna array errors are corrected by modifying the beamforming weight vector. It is verified by the electromagnetic simulation and experiment that the proposed technique reduces the sidelobe level and increases the antenna gain.

The transient grounding impedance measurment of large grid grounding electrodes (대규모 그리드 접지전극의 과도접지임피던스의 측정)

  • Jeon, Byung-Wook;Lee, Su-Bong;Li, Feng;Lee, Seung-Ju;Jung, Dong-Cheol;Lee, Bok-Hee
    • Proceedings of the Korean Institute of IIIuminating and Electrical Installation Engineers Conference
    • /
    • 2008.10a
    • /
    • pp.69-72
    • /
    • 2008
  • This paper presents the transient and conventional grounding impedance behaviors of large grid grounding system associated with the injection point of impulse current The measurement methods consider two possible errors in the grounding-system impedances: (1) ground mutual resistance due to current flow through ground from the ground electrode to be measured to the current auxiliary, (2) ac mutual coupling between the current test lead and the potential test lead The test circuit was set to reduce the error factors. The transient grounding impedance depends on the rise time and injection point of impulse current It is effective that grounding conductor is connected to the center of the large grid grounding system.

  • PDF

A design and fabrication of active phased array antenna for beam scanning using injection-locking coupled oscillators (Injection-Locking Coupled Oscillators를 이용한 빔 주사 용 능동 위상배열안테나의 설계 및 제작)

  • 이두한;김교헌;홍의석
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.22 no.8
    • /
    • pp.1622-1631
    • /
    • 1997
  • A 3-stages Active Microstrip Phased Array Antenn(AMPAA) is implemented using Injection-Locking Coupled Oscillators(ILCO). The AMPAA is a beam scanning active antenna with capability of electrical scanning by frequency varation of ILCO. The synchronization of resonance frequencies in array elements is occured by ILCO, and the ILCO amplifies the injection signal and functions as a phase shifter. The microstrip ptch is operated as a radiation element. The unilateral amplifier is a mutual coupling element of AMPAA, eliminates the reverse locking signal and controls the locking bandwidth of ILCO. The possibility of Monolithic Microwave Integrated Circuits(MMIC) of T/R module is proposed by simplified and integrated fabrication process of AMPAA. The 0.75.$lambda_{0}$ is fixed for a mutual coupling space to wide the scanning angle and minimize the multi-mode. The AMPAA has beam scanning angle of 31.4.deg., HPBW(Half Power Beam Widths) of 26.deg., directive gain of 13.64dB and side lobe of -16.5dB were measured, respectively.

  • PDF

Some Further Consideration for the Image Retrieving of Synthetic Aperture Radiometer

  • Liu, Hao;Wu, Ji;Wu, Qiong
    • Proceedings of the KSRS Conference
    • /
    • 2003.11a
    • /
    • pp.1349-1351
    • /
    • 2003
  • In this paper, theoretical channels model of Synthetic Aperture Radiometer is presented. Based on this model, how amplitude imbalance, phase imbalance and mutual coupling between the different channels effect brightness temperature image retrieving is analyzed. The computer simulation results are also presented to find out the cause of the along-track streaks usually appeared in the retrieved brightness temperature image. In addition, a new system calibration approach is introduced to solve this problem.

  • PDF

Analysis and research on teeth thermodynamic coupling contact of gear transmission system

  • Wang, Xigui;Wang, Yongmei;Zhao, Xuezeng;Li, Xinglin
    • Coupled systems mechanics
    • /
    • v.4 no.3
    • /
    • pp.237-249
    • /
    • 2015
  • In the gear meshing process, gear temperature field concerns the meshing surface friction, the friction heat depends on the contact pressure, the contact pressure is affected by the elastic deformation of gears and the temperature field caused by the thermal deformation, so the temperature field, stress field and displacement field should be mutual coupling. It is necessary to consider in meshing gear pair in the operation process of thermodynamic coupling contact stress (TCCS) and thermodynamic coupling deformation (TCD), and based on thermodynamic coupling analysis (TCA) of gear teeth deformation.

Design of Three-winding Coupled Inductor for Minimum Current Ripple in Battery Chargers

  • Kang, Taewon;Suh, Yongsug
    • Proceedings of the KIPE Conference
    • /
    • 2015.07a
    • /
    • pp.195-196
    • /
    • 2015
  • This paper investigates the design of coupled inductor for minimum inductor current ripple in rapid traction battery charger systems. Based on the general circuit model of coupled inductor together with the operating principles of dc-dc converter, the relationship between the ripple size of inductor current and the coupling factor is derived under the different duty ratio. The optimal coupling factor which corresponds to a minimum inductor ripple current becomes -0.5, i.e. a complete inverse coupling without leakage inductance, as the steady-state duty ratio operating point approaches 1/3 or 2/3. In an opposite manner, the optimal coupling factor value of zero, i.e. zero mutual inductance, is required when the steady-state duty ratio operating point approaches either zero or one. Coupled inductors having optimal coupling factor can minimize the ripple current of inductor and battery current resulting in a reliable and efficient operation of battery chargers.

  • PDF