• Title/Summary/Keyword: Mutual coupling

Search Result 193, Processing Time 0.022 seconds

Improved High Efficiency Bidirectional Resonant Converter for V2G EV Charger (OBC) (V2G EV 충전기(OBC)를 위한 개선된 고효율 양방향 공진컨버터)

  • Oh, Jae-Sung;Kim, Min-Ji;Lee, Jun-Hwan;Woo, Jung-Won;Kim, Eun-Soo;Won, Jong-Seob
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.24 no.6
    • /
    • pp.438-444
    • /
    • 2019
  • In this paper, bidirectional LLC resonant DC/DC converters with the primary auxiliary windings in transformers of resonant circuits are proposed. Although the resonant capacitors are used on both the primary and secondary sides, regardless of the direction of power flow, the main feature of the proposed converters exhibits high gain characteristics without any mutual coupling between the resonant capacitors. For one of the proposed converters, an investigation of the operating characteristics in each mode has been carried out. A prototype of a 3.3 kW bidirectional LLC resonant converter for interfacing 750 V DC buses has been built and tested to verify the validity and applicability of the proposed converter.

LED PSU using an Integrated Transformer of New Shape (새로운 형상의 통합변압기적용 LED PSU)

  • Joo, Jong-Seong;Lee, Young-Soo;Heo, Ye-Chang;Kim, Eun-Soo;Hwang, In-Gab
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.22 no.1
    • /
    • pp.27-35
    • /
    • 2017
  • In this study, an integrated 2-in-1 transformer for a low-weight and low-cost light-emitting diode lighting power supply is proposed. In the transformer, a power factor correction (PFC) inductor and an LLC resonant transformer are placed and integrated on a single magnetic core. The amount of mutual interference, represented by the coupling coefficient, between magnetic fluxes generated from each magnetic source is minimized by using the new shape core of an integrated 2-in-1 transformer. The design consideration on critical conduction mode PFC converter and LLC resonant converter using the proposed 2-in-1 integrated transformer is described, and the overall performance of the 150 W LED PSU shown through the experiment.

The Design of a Wideband E-plane Phased Array Antenna using W/G Simulator (도파관 시뮬레이터를 이용한 광대역 E-평면 넛치 위상 배열 안테나 설계)

  • 김준연;소준호;임중수
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.14 no.2
    • /
    • pp.111-118
    • /
    • 2003
  • Notch Antenna is a travelling wave type antenna and can provide multioctave operation in phased arrays that scan over wide angle. In this paper, we designed a wideband E-plane phased array antenna using E-plane waveguide simulator which has a bandwidth of 3 : 1 and a scan volume of $\pm$45$^{\circ}$ in E-plane. We compared impedance of single antenna and infinite array antenna using equivalent circuit modeling. We analyzed full structure of 1$\times$9 phased array antenna and we evaluated active reflection coefficient with variation of beam scan angle through mutual coupling coefficient acquired from simulation and investigated the variation of antenna gain with variation of active element pattern as beam scan angle is varied.

MIMO Channel Analysis Method using Ray-Tracing Propagation Model (전파예측모델을 이용한 MIMO 채널 분석 방법)

  • 오상훈;명로훈
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.15 no.8
    • /
    • pp.759-764
    • /
    • 2004
  • This paper proposes a method that estimates MIMO channel characteristics analytically using a 3D ray tracing propagation model. We calculate the discrete spatial correlation between sub-channels by considering phase differences of paths, and using this, estimate the mean capacity upper bound of MIMO channel by Jensen's inequality. This analysis model is a deterministic model that do not approach stochastically through measurement nor approach statistically through Monte-Carlo simulations, so this model has high efficiency for time and cost. And based on the electromagnetic theory, this model may analyze quantitatively the parameters which can affect the channel capacity - antenna pattern, polarization mutual coupling, antenna structure and etc. This model may be used for the development of an optimal antenna structure for MIMO systems.

A Robust Fault Location Algorithm for Single Line-to-ground Fault in Double-circuit Transmission Systems

  • Zhang, Wen-Hao;Rosadi, Umar;Choi, Myeon-Song;Lee, Seung-Jae;Lim, Il-Hyung
    • Journal of Electrical Engineering and Technology
    • /
    • v.6 no.1
    • /
    • pp.1-7
    • /
    • 2011
  • This paper proposes an enhanced noise robust algorithm for fault location on double-circuit transmission line for the case of single line-to-ground (SLG) fault, which uses distributed parameter line model that also considers the mutual coupling effect. The proposed algorithm requires the voltages and currents from single-terminal data only and does not require adjacent circuit current data. The fault distance can be simply determined by solving a second-order polynomial equation, which is achieved directly through the analysis of the circuit. The algorithm, which employs the faulted phase network and zero-sequence network with source impedance involved, effectively eliminates the effect of load flow and fault resistance on the accuracy of fault location. The proposed algorithm is tested using MATLAB/Simulink under different fault locations and shows high accuracy. The uncertainty of source impedance and the measurement errors are also included in the simulation and shows that the algorithm has high robustness.

EEG Nonlinear Interdependence Measure of Brain Interactions under Zen Meditation

  • Huang, Hsuan-Yung;Lo, Pei-Chen
    • Journal of Biomedical Engineering Research
    • /
    • v.29 no.4
    • /
    • pp.286-294
    • /
    • 2008
  • This work investigates the characteristics of brain interactions of experienced Zen-Buddhist practitioners by obtaining multichannel EEG (electroencephalogram) data. Brain interactions were compared among three phases-40-minute meditation (M), 5-minute Chakra-focusing practice (Z) and rest with closed eyes (R). The similarity index S, developed in nonlinear dynamical system theory, was employed to measure the degree of possibly asymmetric coupling. Meditators exhibited, overall, stronger interactions among multiple cortical areas in meditation stages M and Z than in the R state. This enhancement was greater in the M stage when the meditator was accompanied by a thought-free and fully consciousness state. In the high-frequency band (>13Hz), the interdependence was also higher in both meditation stages than at baseline rest. However, the interaction strength, especially in the posterior regions, was greatest in the Z stage, which involved internal attention. Few electrode pairs were observed with significant pair-wise asymmetry in the Z state. The similarity is a possible characteristic of dense reciprocal and strong mutual interactions between multiple cortical areas during meditation - especially in the Z state in the high-frequency band. These results demonstrate that profound Zen meditation induces various dynamic states in different phases of meditation, possibly reflected by nonlinear interdependence measure.

An Improved Handoff Technique for a Seamless Multimedia Services (끊김 없는 멀티미디어 서비스를 위한 향상된 핸드오프 기법)

  • Kim Jeong-Won
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.9 no.2
    • /
    • pp.283-288
    • /
    • 2005
  • Packet transmission and independent addressing in the mobile environments are very similar to the ones in the multicasting environment. So, in this paper, we propose a new scheme about how to manage the multicasting group and to set the communication path in the mobile environment by applying two-level addressing mode, which is similar to mobile If, for location-independent address setting. And we propose the smooth handoff scheme that minimizes the handoff delay for mobile multimedia services. To check the performance of our proposed scheme, we modified the NS-2 network simulator and as a result, we showed that our proposed scheme is better than other techniques in terms of handoff delay and transmitted packets' throughput.

Current Status and Applications of Integrated Safety Assessment and Simulation Code System for ISA

  • Izquierdo, J.M.;Hortal, J.;Sanchez Perea, M.;Melendez, E.;Queral, C.;Rivas-Lewicky, J.
    • Nuclear Engineering and Technology
    • /
    • v.49 no.2
    • /
    • pp.295-305
    • /
    • 2017
  • This paper reviews current status of the unified approach known as integrated safety assessment (ISA), as well as the associated SCAIS (simulation codes system for ISA) computer platform. These constitute a proposal, which is the result of collaborative action among the Nuclear Safety Council (CSN), University of Madrid (UPM), and NFQ Solutions S.L, aiming to allow independent regulatory verification of industry quantitative risk assessments. The content elaborates on discussions of the classical treatment of time in conventional probabilistic safety assessment (PSA) sequences and states important conclusions that can be used to avoid systematic and unacceptable underestimation of the failure exceedance frequencies. The unified ISA method meets this challenge by coupling deterministic and probabilistic mutual influences. The feasibility of the approach is illustrated with some examples of its application to a real size plant.

Detectability of Subsurface Thin Layer by Electromagnetic Sounding Systems (전자탐사법의 각종 루프시스템에 의한 지하박층의 검색능력)

  • Kim, Hee Joon
    • Economic and Environmental Geology
    • /
    • v.20 no.1
    • /
    • pp.77-82
    • /
    • 1987
  • An analysis is made for the relative effectiveness in detecting a subsurface thin layer by four electromagnetic depth sounding systems; horizontal coplanar loops, perpendicular loops, vertical coplanar loops and vertical coaxial loops. The moduli and phases of mutual coupling ratios over a three-layered earth for the four systems are evaluated rapidly by the related convolution technique. Root mean square differences between the responses from the three-layered and the homogeneous earths are used to compare the relative effectiveness of the systems quantitatively. Comparing the all systems, it is found that the perpendicular loop system appears to be the most superior to the other systems.

  • PDF

Study on quench detection of the KSTAR CS coil with CDA+MIK compensation of inductive voltages

  • An, Seok Chan;Kim, Jinsub;Ko, Tae Kuk;Chu, Yong
    • Progress in Superconductivity and Cryogenics
    • /
    • v.18 no.1
    • /
    • pp.55-58
    • /
    • 2016
  • Quench Detection System (QDS) is essential to guarantee the stable operation of the Korea Superconducting Tokamak Advanced Research (KSTAR) Poloidal Field (PF) magnet system because the stored energy in the magnet system is very large. For the fast response, voltage-based QDS has been used. Co-wound voltage sensors and balanced bridge circuits were applied to eliminate the inductive voltages generated during the plasma operation. However, as the inductive voltages are hundreds times higher than the quench detection voltage during the pulse-current operation, Central Difference Averaging (CDA) and MIK, where I and K stand for mutual coupling indexes of different circuits, which is an active cancellation of mutually generated voltages have been suggested and studied. In this paper, the CDA and MIK technique were applied to the KSTAR magnet for PF magnet quench detection. The calculated inductive voltages from the MIK and measured voltages from the CDA circuits were compared to eliminate the inductive voltages at result signals.