• Title/Summary/Keyword: Mutation Rate

Search Result 349, Processing Time 0.03 seconds

Enhanced Coupling of $M_1$ Muscarinic Receptors to Activation of Phospholipase C upon Mutation of a Transposed Amino Acid Triplet Repeat

  • Lee, Seok-Yong;Sung, Ki-Wug;Kim, Ok-Nyu;Lee, Sang-Bok
    • The Korean Journal of Physiology and Pharmacology
    • /
    • v.1 no.1
    • /
    • pp.19-25
    • /
    • 1997
  • The C-terminus ends of the second putative transmembrane domains of both $M_1$ and $M_2$ muscarinic receptors contain a triplet of amino acid residues consisting of leucine (L), tyrosine (Y) and threonine (T). This triplet is repeated as LYT-TYL in $M_1$ receptors at the interface between the second transmembrane domain and the first extracellular loop. Interestingly, however, it is repeated in a transposedfashion (LYT-LYT) in the sequence of $M_2$ receptors. In our previous work, we investigated the possible significance of this unique sequence diversity for determining the distinct differential receptor function at the two receptor subtypes. However, we found mutation of the LYTTYL sequence of $M_1$ receptors to the corresponding $M_2$ receptor LYTLYT sequence demonstrated markedly enhanced the stimulation of phosphoinositide (PI) hydrolysis by carbachol without a change in its coupling to increased cyclic AMP formation. In this work, thus, the enhanced stimulation of PI hydrolysis in the LYTLYT $M_1$ receptor mutant was further investigated. The stimulation of PI hydrolysis by carbachol was enhanced in the mutant $M_1$ receptor, and this change was not due to alterations in the rate of receptor desensitization or sequestration. The observed larger response to carbachol at mutant $M_1$ receptors was also not due to an artifact resulting from selection of CHO cells which express higher levels of G-proteins or phospholipase C. Our data suggest that although the LYTTYL sequence in $M_1$ muscarinic receptors is not involved in determining receptor pharmacology, mutation of the sequence enhanced the coupling of $M_1$ receptors to the stimulation of phospholipase C.

  • PDF

Sulfonylurea Herbicide Resistance Mechanism of Some Acetohydroxy Acid Synthase Mutants and New Designed Herbicides Specific to the Mutants

  • Choe, Mun Myong;Kang, Hun Chol;Kim, In Chul;Li, Hai Su;Wu, Ming Gen;Lee, Im Shik
    • Weed & Turfgrass Science
    • /
    • v.6 no.1
    • /
    • pp.28-31
    • /
    • 2017
  • The mutation rate of proline in the position 197 (Pro197) in acetohydroxy acid synthase (AHAS) is highest among sulfonylurea (SU) herbicide-resistance mutants. Therefore, it is significant to investigate the resistance mechanism for the mutation and to develop the herbicides specific to the mutants. SU herbicide resistance mechanism of the mutants, 197Ser, 197Thr and 197Ala, in AHAS were targeted for designing new SU-herbicide. We did molecular dynamics (MD) simulation for understanding SU herbicide-resistance mechanisms of AHAS mutants and designed new herbicides with docking and MD evaluations. We have found that mutation to 197Ala and 197Ser enlarged the entrance of the active site, while 197Thr contracted. Map of the root mean square derivation (RMSD) and radius gyrations (Rg) revealed the domain indicating the conformations for herbicide resistant. Based on the enlarging-contracting mechanism of active site entrance, we designed new herbicides with substitution at the heterocyclic moiety of a SU herbicide for the complementary binding to the changed active site entrances of mutants, and designed new herbicides. We confirmed that our screened new herbicides bonded to both AHAS wild type and mutants with higher affinity, showing more stable binding conformation than the existing herbicides.

No Effect of High Fat Diet-Induced Obesity on Spontaneous Reporter Gene Mutations in gpt Delta Mice

  • Takasu, Shinji;Ishii, Yuji;Matsushita, Kohei;Kuroda, Ken;Kijima, Aki;Kodama, Yukio;Ogawa, Kumiko;Umemura, Takashi
    • Asian Pacific Journal of Cancer Prevention
    • /
    • v.15 no.17
    • /
    • pp.7149-7152
    • /
    • 2014
  • A large number of epidemiological studies have demonstrated that obesity is a risk factor for several human cancers. Several animal studies using rodents with diet-induced or genetic obesity have also demonstrated that obesity can promote tumor development. However, the effects of obesity on the early stages of carcinogenesis, and especially on the spontaneous occurrence of somatic gene mutations, remain unclear. To investigate the effects of obesity on the rate of spontaneous gene mutations, we performed reporter gene mutation assays in liver, kidney, and colon, organs in which obesity appears to be associated with cancer development on the basis of epidemiological or animal studies, in mice with high fat diet (HFD)-induced obesity. Six-week-old male and female C57BL/6 gpt delta mice were fed HFD or standard diet (STD) for 13 or 26 weeks. At the end of the experiments, reporter gene mutation assays of liver, kidney, and colon were performed. Final body weights and serum leptin levels of male and female mice fed HFD for 13 or 26 weeks were significantly increased compared with corresponding STD-fed groups. Reporter gene mutation assays of liver, kidney, and colon revealed that there were no significant differences in gpt or $Spi^-$ mutant frequencies between STD- and HFD-fed mice in either the 13-week or 26-week groups. These results indicate that HFD treatment and consequent obesity does not appear to influence the spontaneous occurrence of somatic gene mutations.

Mutation Detection of E6 and LCR Genes from HPV 16 Associated with Carcinogenesis

  • Mosmann, Jessica P.;Monetti, Marina S.;Frutos, Maria C.;Kiguen, Ana X.;Venezuela, Raul F.;Cuffini, Cecilia G.
    • Asian Pacific Journal of Cancer Prevention
    • /
    • v.16 no.3
    • /
    • pp.1151-1157
    • /
    • 2015
  • Human papillomavirus (HPV) is responsible for one of the most frequent sexually transmitted infections. The first phylogenetic analysis was based on a LCR region fragment. Nowadays, 4 variants are known: African (Af-1, Af-2), Asian-American (AA) and European (E). However the existence of sub-lineages of the European variant havs been proposed, specific mutations in the E6 and LCR sequences being possibly related to persistent viral infections. The aim of this study was a phylogenetic study of HPV16 sequences of endocervical samples from C${\acute{o}}$rdoba, in order to detect the circulating lineages and analyze the presence of mutations that could be correlated with malignant disease. The phylogenetic analysis determined that 86% of the samples belonged to the E variant, 7% to AF-1 and the remaining 7% to AF-2. The most frequent mutation in LCR sequences was G7521A, in 80% of the analyzed samples; it affects the binding site of a transcription factor that could contribute to carcinogenesis. In the E6 sequences, the most common mutation was T350G (L83V), detected in 67% of the samples, associated with increased risk of persistent infection. The high detection rate of the European lineage correlated with patterns of human migration. This study emphasizes the importance of recognizing circulating lineages, as well as the detection of mutations associated with high-grade neoplastic lesions that could be correlated to the development of carcinogenic lesions.

Development of High-yielding Mutants of Streptomyces avermitilis for Avermectin B_{1a} Production through Protoplast Fusion. (원형질체 융합에 의한 Avermectina B_{1a} 고생산성 Streptomyces avermitilis 균주 개발)

  • 김경희;송성기;정연호;정용섭;전계택
    • Microbiology and Biotechnology Letters
    • /
    • v.32 no.2
    • /
    • pp.101-109
    • /
    • 2004
  • In order to enhance the productivity of AVM $B_{la}$ produced by Streptomyces avermitilis as a secondary metabolite, we established a basic protocol necessary for protoplast fusion with high-producing strains as a fusion partner, and then obtained various kinds offusants by adopting a massive strain-development procedure (a miniaturized strain screening system). An alternative fusion method using UV and/or NTG mutation of protoplasts was developed to screen genetic recombinants without specific selectable markers. In this method, the mutants obtained by protoplast fusion after UV and/or NTG treatment (95% death rate) of the respective fusion partner (protoplasts of the respective mutants resistant against L-isoleucine antimetabolites such as O-methylthreonine and/or azaleucine) were regarded as DNA-recombined protoplast fusants. Notably it was demonstrated that most of the protoplast recombinants obtained by the UV mutation method were able to biosynthesize higher amount of AVM $B_{la}$ , reaching almost three times higher level (almost equal to the industrial productivity), compared to the average AVM Bla amount of the parallel mother strains.

Oxidative Damage of DNA Induced by Ferritin and Hydrogen Peroxide

  • Kang, Jung-Hoon
    • Bulletin of the Korean Chemical Society
    • /
    • v.31 no.10
    • /
    • pp.2873-2876
    • /
    • 2010
  • Excess free iron generates oxidative stress that may contribute to the pathogenesis of various causes of neurodegenerative diseases. Previous studies have shown that one of the primary causes of increased brain iron may be the release of excess iron from intracellular iron storage molecules. In this study, we attempted to characterize the oxidative damage of DNA induced by the reaction of ferritin with $H_2O_2$. When DNA was incubated with ferritin and $H_2O_2$, DNA strand breakage increased in a time-dependent manner. Hydroxyl radical scavengers strongly inhibited the ferritin/$H_2O_2$ system-induced DNA cleavage. We investigated the generation of hydroxyl radical in the reaction of ferritin with $H_2O_2$ using a chromogen, 2,2'-azinobis-(2-ethylbenzthiazoline-6-sulfonate) (ABTS), which reacted with ${\cdot}OH$ to form $ABTS^{+\cdot}$. The initial rate of $ABTS^{+\cdot}$ formation increased as a function of incubation time. These results suggest that DNA strand breakage is mediated in the reaction of ferritin with $H_2O_2$ via the generation of hydroxyl radicals. The iron-specific chelator, deferoxamine, also inhibited DNA cleavage. Spectrophotometric study using a color reagent showed that the release of iron from $H_2O_2$-treated ferritin increased in a time-dependent manner. Ferritin enhanced mutation of the lacZ' gene in the presence of $H_2O_2$ when measured as a loss of $\alpha$-complementation. These results indicate that ferritin/$H_2O_2$ system-mediated DNA cleavage and mutation may be attributable to hydroxyl radical generation via a Fenton-like reaction of free iron ions released from oxidatively damaged ferritin.

Paired analysis of tumor mutation burden calculated by targeted deep sequencing panel and whole exome sequencing in non-small cell lung cancer

  • Park, Sehhoon;Lee, Chung;Ku, Bo Mi;Kim, Minjae;Park, Woong-Yang;Kim, Nayoung K.D.;Ahn, Myung-Ju
    • BMB Reports
    • /
    • v.54 no.7
    • /
    • pp.386-391
    • /
    • 2021
  • Owing to rapid advancements in NGS (next generation sequencing), genomic alteration is now considered an essential predictive biomarkers that impact the treatment decision in many cases of cancer. Among the various predictive biomarkers, tumor mutation burden (TMB) was identified by NGS and was considered to be useful in predicting a clinical response in cancer cases treated by immunotherapy. In this study, we directly compared the lab-developed-test (LDT) results by target sequencing panel, K-MASTER panel v3.0 and whole-exome sequencing (WES) to evaluate the concordance of TMB. As an initial step, the reference materials (n = 3) with known TMB status were used as an exploratory test. To validate and evaluate TMB, we used one hundred samples that were acquired from surgically resected tissues of non-small cell lung cancer (NSCLC) patients. The TMB of each sample was tested by using both LDT and WES methods, which extracted the DNA from samples at the same time. In addition, we evaluated the impact of capture region, which might lead to different values of TMB; the evaluation of capture region was based on the size of NGS and target sequencing panels. In this pilot study, TMB was evaluated by LDT and WES by using duplicated reference samples; the results of TMB showed high concordance rate (R2 = 0.887). This was also reflected in clinical samples (n = 100), which showed R2 of 0.71. The difference between the coding sequence ratio (3.49%) and the ratio of mutations (4.8%) indicated that the LDT panel identified a relatively higher number of mutations. It was feasible to calculate TMB with LDT panel, which can be useful in clinical practice. Furthermore, a customized approach must be developed for calculating TMB, which differs according to cancer types and specific clinical settings.

MCRO-ECP: Mutation Chemical Reaction Optimization based Energy Efficient Clustering Protocol for Wireless Sensor Networks

  • Daniel, Ravuri;Rao, Kuda Nageswara
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.13 no.7
    • /
    • pp.3494-3510
    • /
    • 2019
  • Wireless sensor networks encounter energy saving as a major issue as the sensor nodes having no rechargeable batteries and also the resources are limited. Clustering of sensors play a pivotal role in energy saving of the deployed sensor nodes. However, in the cluster based wireless sensor network, the cluster heads tend to consume more energy for additional functions such as reception of data, aggregation and transmission of the received data to the base station. So, careful selection of cluster head and formation of cluster plays vital role in energy conservation and enhancement of lifetime of the wireless sensor networks. This study proposes a new mutation chemical reaction optimization (MCRO) which is an algorithm based energy efficient clustering protocol termed as MCRO-ECP, for wireless sensor networks. The proposed protocol is extensively developed with effective methods such as potential energy function and molecular structure encoding for cluster head selection and cluster formation. While developing potential functions for energy conservation, the following parameters are taken into account: neighbor node distance, base station distance, ratio of energy, intra-cluster distance, and CH node degree to make the MCRO-ECP protocol to be potential energy conserver. The proposed protocol is studied extensively and tested elaborately on NS2.35 Simulator under various senarios like varying the number of sensor nodes and CHs. A comparative study between the simulation results derived from the proposed MCRO-ECP protocol and the results of the already existing protocol, shows that MCRO-ECP protocol produces significantly better results in energy conservation, increase network life time, packets received by the BS and the convergence rate.

Detection of embB Gene Mutation of Mycobacterium tuberculosis by Reverse Hybridization Assay (역교잡 방법을 이용한 결핵균 embB 유전자 돌연변이 검출)

  • Park, Young Kil;Yu, Hee Kyung;Park, Chan Hong;Ryu, Sung Weon;Lee, Seung Heon;Shim, Myung Sup;Lew, Woo Jin;Koh, Won-Jung;Kwon, O Jung;Cho, Sang Nae;Bai, Gill Han
    • Tuberculosis and Respiratory Diseases
    • /
    • v.58 no.2
    • /
    • pp.129-134
    • /
    • 2005
  • Background : Ethambutol (EMB) is one of important first-line drug in the treatment of tuberculosis. Molecular techniques to detect embB gene mutations have been considered as an method to define the EMB resistance. We investigated the mutation rate within embB gene among EMB resistant strains using reverse hybridization techniques. Methods : We made 11 probes that had wild or mutated sequences containing codons 306, 406, or 497 within embB gene respectively. These probes were reverse-hybridized with PCR products amplified from embB gene which were isolated from 149 ethambutol resistant strains and 50 pan-susceptible strains. Results : Out of 149 ethambutol resistant strains, one hundred (67.1%) had mutation at least one base at codon 306, 406, or 497 in embB gene. Mutation at codon 306, 406, 497 were demonstrated in 75 (50.3%), 16 (10.7%), and 13 strains (8.7%) respectively. There were four strains that showed multi-mutation at codon 306 and codon 406 simultaneously. A high proportion (8.1%) had single mutation at codon 406. There was no mutation observed in embB gene among 50 pan-susceptible strains. Conclusion : Reverse hybridization will be useful technique for detection of gene mutation correlated to ethambutol resistance.

p53 Gene Mutation in Gastric Cancer Tissue (위암조직에서 p53 유전자의 돌연변이)

  • Ku, Ki-Beom;Park, Seong-Hoon;Cheong, Ho-Young;Lee, Myung-Hoon;Yu, Wan-Sik
    • Journal of Gastric Cancer
    • /
    • v.6 no.4
    • /
    • pp.214-220
    • /
    • 2006
  • Purpose: p53 is one of the most commonly mutated genes in human tumors. The aim of this study was to analyze p53 mutation in gastric cancer and its correlations with the clinicopathologic variables to clarify the usefulness of p53 mutation as a prognostic factor. Materials and Methods: Specimens from 331 patients with gastric cancer who underwent a gastrectomy between March 1999 and April 2001 at the Kyungpook National University Hospital were used. p53 gene mutations were assessed by using a polymerase chain-reaction single-strand conformation polymorphism (PCR-SSCP) analysis. The correlations between p53 gene mutation and clinocopathologic parameters were analyzed. Results: p53 mutations were found in 66 (19.9%) tumors. Among those 66 cases, mutations were seen in 23 tumors at axon 5, in 8 at exon 6, in 21 at exon 7, and in 17 at exon 8. Two mutations were shown in 3 tumors. Thiriy-six (23.1%) of 156 intestinal-type tumors and 19 (13.1%) of 145 diffuse-type tumors showed p53 gene mutation (P=0.007). The frequency of p53 gene mutation didn't show any significant differences according to age, sex, stage, location, or gross type. Exon 5 mutations showed more frequently in intestinal-type tumors than in diffuse-type tumors (9.7% vs. 2.8%, P=0.024), and p53 mutation were more frequent in lymph nodes metastasis group than lymph nodes non-metastasis group with statistical significance (25.0% vs 15.6%, P=0.034). The five-year survival rate showed no statistically significant difference with p53 mutation (P=0.704). Conclusion: p53 mutations assessed by PCR-SSCP had little value as a prognostic factor after gastrectomy in patients with gastric cancer.

  • PDF