• Title/Summary/Keyword: Mutant screening

Search Result 134, Processing Time 0.03 seconds

Immunohistochemical Detection of p53 Gene Mutation in Urine Samples in the Patients with Bladder Cancer (방광암 환자의 요세포 검사에서 p53 단백 발현의 의의)

  • Lee, Sang-Sook;Bae, Ji-Yeon;Kang, Yu-Na;Cho, Young-Rok;Park, Nam-Jo;Kim, Seun-Young;Kim, Jung-Hi
    • The Korean Journal of Cytopathology
    • /
    • v.7 no.2
    • /
    • pp.144-150
    • /
    • 1996
  • Although bladder cancers are very common, little is known about their molecular pathogenesis. It is known that p53 alteration is found in about 60% of muscle-invasive bladder cancer, necessiating aggressive therapy and poor outcome. We examined the nuclear expression of p53 protein, using D07 monoclonal antibody in the urine samples from 31 patients with transitional cell carcinoma of the bladder to investigate the correlation of p53 overexpression with histologic grades and depth of invasion. The positive rate of p53 protein was 27% in superficial bladder tumor, but increased up to 71% in the invasive bladder carcinomas. The overexpression of p53 protein increased according to Mostofi grading system from 18% in grade I, 45% in grade II, and up to 100% in grade III. The p53 expression tended to be higher in the invasive and high grade bladder cancers than in the superficial and low grade ones(p<0.05). These results suggest that immunohistochemical analysis of the urine specimen in the bladder cancer patients could be a useful method of screening for the presence of p53 mutant protein. The mutant p53 protein expression may be an indicator of bladder cancer with more proliferative potential and/or aggressive biologic behavior.

  • PDF

Insertional mutations exhibiting high cell-culture density HCD phenotypes are enriched through continuous subcultures in Chlamydomonas reinhardtii

  • Thung, Leena;He, Jing;Zhu, Qingling;Xu, Zhenyu;Liu, Jianhua;Chow, Yvonne
    • ALGAE
    • /
    • v.33 no.1
    • /
    • pp.127-141
    • /
    • 2018
  • Low efficiency in microalgal biomass production was largely attributed to the low density of algal cell cultures. Though mutations that reduced the level of chlorophyll or pigment content increased efficiency of photon usage and thus the cell-culture density under high-illumination growth conditions (e.g., >$500{\mu}mol\;photon\;m^{-2}\;s^{-1}$), it was unclear whether algae could increase cell-culture density under low-illumination conditions (e.g., ${\sim}50{\mu}mol\;photon\;m^{-2}\;s^{-1}$). To address this question, we performed forward genetic screening in Chlamydomonas reinhardtii. A pool of >1,000 insertional mutants was constructed and subjected to continuous subcultures in shaking flasks under low-illumination conditions. Complexity of restriction fragment length polymorphism (RFLP) pattern in cultures indicated the degree of heterogeneity of mutant populations. We showed that the levels of RFLP complexity decreased when cycles of subculture increased, suggesting that cultures were gradually populated by high cell-culture density (HCD) strains. Analysis of the 3 isolated HCD mutants after 30 cycles of subcultures confirmed that their maximal biomass production was 50-100% higher than that of wild type under low-illumination. Furthermore, levels of chlorophyll content in HCD mutant strains were similar to that of wild type. Inverse polymerase chain reaction analysis identified the locus of insertion in two of three HCD strains. Molecular and transcriptomic analyses suggested that two HCD mutants were a result of the gain-of-function phenotype, both linking to the abnormality of mitochondrial functions. Taken together, our results demonstrate that HCD strains can be obtained through continuous subcultures under low illumination conditions.

Directed Evolution of Beta-galactosidase from Escherichia coli into Beta-glucuronidase

  • Xiong, Ai-Sheng;Peng, Ri-He;Zhuang, Jing;Liu, Jin-Ge;Xu, Fang;Cai, Bin;Guo, Zhao-Kui;Qiao, Yu-Shan;Chen, Jian-Min;Zhang, Zhen;Yao, Quan-Hong
    • BMB Reports
    • /
    • v.40 no.3
    • /
    • pp.419-425
    • /
    • 2007
  • In vitro directed evolution through DNA shuffling is a powerful molecular tool for creation of new biological phenotypes. E. coli $\beta$-galactosidase and $\beta$-glucuronidase are widely used, and their biological function, catalytic mechanism, and molecular structures are well characterized. We applied an in vitro directed evolution strategy through DNA shuffling and obtained five mutants named YG6764, YG6768, YG6769, YG6770 and YG6771 after two rounds of DNA shuffling and screening, which exhibited more $\beta$-glucuronidase activity than wild-type $\beta$-galactosidase. These variants had mutations at fourteen nucleic acid sites, resulting in changes in ten amino acids: S193N, T266A, Q267R, V411A, D448G, G466A, L527I, M543I, Q626R and Q951R. We expressed and purified those mutant proteins. Compared to the wild-type protein, five mutant proteins exhibited high $\beta$-glucuronidase activity. The comparison of molecular models of the mutated and wildtype enzymes revealed the relationship between protein function and structural modification.

Evaluation of Luminescent P450 Analysis for Directed Evolution of Human CYP4A11

  • Choi, Seunghye;Han, Songhee;Lee, Hwayoun;Chun, Young-Jin;Kim, Donghak
    • Biomolecules & Therapeutics
    • /
    • v.21 no.6
    • /
    • pp.487-492
    • /
    • 2013
  • Cytochrome P450 4A11 (CYP4A11) is a fatty acid hydroxylase enzyme expressed in human liver. It catalyzes not only the hydroxylation of saturated and unsaturated fatty acids, but the conversion of arachidonic acid to 20-hydroxyeicosatetraenoic acid (20-HETE), a regulator of blood pressure. In this study, we performed a directed evolution analysis of CYP4A11 using the luminogenic assay system. A random mutant library of CYP4A11, in which mutations were made throughout the entire coding region, was screened with luciferase activity to detect the demethylation of luciferin-4A (2-[6-methoxyquinolin-2-yl]-4,5-dihydrothiazole-4-carboxylic acid) of CYP4A11 mutants in Escherichia coli. Consecutive rounds of random mutagenesis and screening yielded three improved CYP4A11 mutants, CP2600 (A24T/T263A), CP2601 (T263A), and CP2616 (A24T/T263A/V430E) with ~3-fold increase in whole cells and >10-fold increase in purified proteins on the luminescence assay. However, the steady state kinetic analysis for lauric acid hydroxylation showed the significant reductions in enzymatic activities in all three mutants. A mutant, CP2600, showed a 51% decrease in catalytic efficiency ($k_{cat}/K_m$) for lauric acid hydroxylation mainly due to an increase in $K_m$. CP2601 and CP2616 showed much greater reductions (>75%) in the catalytic efficiency due to both a decrease in $k_{cat}$ and an increase in Km. These decreased catalytic activities of CP2601 and CP2616 can be partially attributed to the changes in substrate affinities. These results suggest that the enzymatic activities of CYP4A11 mutants selected from directed evolution using a luminogenic P450 substrate may not demonstrate a direct correlation with the hydroxylation activities of lauric acid.

Fluorometric Detection of Low-Abundance EGFR Exon 19 Deletion Mutation Using Tandem Gene Amplification

  • Kim, Dong-Min;Zhang, Shichen;Kim, Minhee;Kim, Dong-Eun
    • Journal of Microbiology and Biotechnology
    • /
    • v.30 no.5
    • /
    • pp.662-667
    • /
    • 2020
  • Epidermal growth factor receptor (EGFR) mutations are not only genetic markers for diagnosis but also biomarkers of clinical-response against tyrosine kinase inhibitors (TKIs) in non-small cell lung cancer (NSCLC). Among the EGFR mutations, the in-frame deletion mutation in EGFR exon 19 kinase domain (EGFR exon 19-del) is the most frequent mutation, accounting for about 45% of EGFR mutations in NSCLCs. Development of sensitive method for detecting the EGFR mutation is highly required to make a better screening for drug-response in the treatment of NSCLC patients. Here, we developed a fluorometric tandem gene amplification assay for sensitive detection of low-abundance EGFR exon 19-del mutant genomic DNA. The method consists of pre-amplification with PCR, thermal cycling of ligation by Taq ligase, and subsequent rolling circle amplification (RCA). PCR-amplified DNA from genomic DNA samples was used as splint DNA to conjugate both ends of linear padlock DNA, generating circular padlock DNA template for RCA. Long stretches of ssDNA harboring multiple copies of G-quadruplex structure was generated in RCA and detected by thioflavin T (ThT) fluorescence, which is specifically intercalated into the G-quadruplex, emitting strong fluorescence. Sensitivity of tandem gene amplification assay for detection of the EGFR exon 19-del from gDNA was as low as 3.6 pg, and mutant gDNA present in the pooled normal plasma was readily detected as low as 1% fraction. Hence, fluorometric detection of low-abundance EGFR exon 19 deletion mutation using tandem gene amplification may be applicable to clinical diagnosis of NSCLC patients with appropriate TKI treatment.

Insight Into Genes Involved in the Production of Extracellular Chitinase in a Biocontrol Bacterium Lysobacter enzymogenes C-3

  • Choi, Hoseong;Kim, Hyun Jung;Lee, Jin Hee;Kim, Ji Soo;Park, Seur Kee;Kim, In Seon;Kim, Young Cheol
    • The Plant Pathology Journal
    • /
    • v.28 no.4
    • /
    • pp.439-445
    • /
    • 2012
  • The chitinase producing Lysobacter enzymogenes C-3 has previously been shown to suppress plant pathogens in vitro and in the field, but little is known of the regulation of chitinase production, or its role in antimicrobial activity and biocontrol. In this study, we isolated and characterized chitinase-defective mutants by screening the transposon mutants of L. enzymogenes C-3. These mutations disrupted genes involved in diverse functions: glucose-galactose transpoter (gluP), disulfide bond formation protein B (dsbB), Clp protease (clp), and polyamine synthase (speD). The chitinase production of the SpeD mutant was restored by the addition of exogenous spermidine or spermine to the bacterial cultures. The speD and clp mutants lost in vitro antifungal activities against plant fungal pathogens. However, the gluP and dsbB mutants showed similar antifungal activities to that of the wild-type. The growth of the mutants in nutrient rich conditions containing chitin was similar with that of the wild-type. However, growth of the speD and gluP mutants was defective in chitin minimal medium, but was observed no growth retardation in the clp and dsbB mutant on chitin minimal medium. In this study, we identified the four genes might be involved and play different role in the production of extracellular chitinase and antifungal activity in L. enzymogenes C-3.

Cloning and Characterization of ${\Delta}^1$-Pyrroline-5-Carboxylate Synthetase Genes and Identification of Point Mutants in Medicago truncatula

  • Song, Ki-Hoon;Song, Dae-Hae;Lee, Jeong-Ran;Kim, Goon-Bo;Choi, Hong-Kyu;Penmetsa, R. Varma;Nam, Young-Woo
    • KOREAN JOURNAL OF CROP SCIENCE
    • /
    • v.52 no.4
    • /
    • pp.458-468
    • /
    • 2007
  • To tolerate environmentally adverse conditions such as cold, drought, and salinity, plants often synthesize and accumulate proline in cells as compatible osmolytes. ${\Delta}^1$-Pyrroline-5-carboxylate synthetase(P5CS) catalyzes the rate-limiting step of proline biosynthesis from glutamate. Two complete genes, MtP5CS1 and MtP5CS2, were isolated from the model legume Medicago truncatula by cDNA cloning and bacterial artificial chromosome library screening. Nucleotide sequence analysis showed that both genes consisted of 20 exons and 19 introns. Alignment of the predicted amino acid sequences revealed high similarities with P5CS proteins from other plant species. The two MtP5CS genes were expressed in response to high salt and low temperature treatments. Semi-quantitative reverse transcription-polymerase chain reaction showed that MtP5CS1 was expressed earlier than MtP5CS2, indicating differential regulation of the two genes. To evaluate the reverse genetic effects of nucleotide changes on MtP5CS function, a Targeting Induced Local Lesions in Genomes approach was taken. Three mutants each were isolated for MtP5CS1 and MtP5CS2, of which a P5CS2 nonsense mutant carrying a codon change from arginine to stop was expected to bring translation to premature termination. These provide a valuable genetic resource with which to determine the function of the P5CS genes in environmental stress responses of legume crops.

Enhanced Production of Itaconic Acid through Development of Transformed Fungal Strains of Aspergillus terreus

  • Shin, Woo-Shik;Park, Boonyoung;Lee, Dohoon;Oh, Min-Kyu;Chun, Gie-Taek;Kim, Sangyong
    • Journal of Microbiology and Biotechnology
    • /
    • v.27 no.2
    • /
    • pp.306-315
    • /
    • 2017
  • Metabolic engineering with a high-yielding mutant, A. terreus AN37, was performed to enhance the production of itaconic acid (IA). Reportedly, the gene cluster for IA biosynthesis is composed of four genes: reg (regulator), mtt (mitochondrial transporter), cad (cis-aconitate decarboxylase), and mfs (membrane transporter). By overexpressing each gene of the IA gene cluster in A. terreus AN37 transformed by the restriction enzyme-mediated integration method, several transformants showing high productivity of IA were successfully obtained. One of the AN37/cad transformants could produce a very high amount of IA (75 g/l) in shake-flask cultivations, showing an average of 5% higher IA titer compared with the high-yielding control strain. Notably, in the case of the mfs transformants, a maximal increase of 18.3% in IA production was observed relative to the control strain under the identical fermentation conditions. Meanwhile, the overexpression of reg and mtt genes showed no significant improvements in IA production. In summary, the overexpressed cis-aconitate decarboxylase (CAD) and putative membrane transporter (MFS) appeared to have positive influences on the enhanced IA productivity of the respective transformant. The maximal increases of 13.6~18.3% in IA productivity of the transformed strains should be noted, since the parallel mother strain used in this study is indeed a very high-performance mutant that has been obtained through intensive rational screening programs in our laboratory.

The changes of stresses and ecdysteroid biosynthesis gene expression levels in Kynurenine 3-monooxygenase mutant Bombyx mori

  • Jeong, Chan Young;Lee, Chang Hoon;Kim, Su Bae;Kang, Sang Kuk;Ju, Wan-Taek;Kim, Seong-Wan;Kim, Nam-Suk;Kim, Kee Young;Park, Jong Woo
    • International Journal of Industrial Entomology and Biomaterials
    • /
    • v.43 no.1
    • /
    • pp.29-36
    • /
    • 2021
  • Silkworms have long been bred with human history to produce silk. It has been with humans for longer than other industrial insects, and the silkworm variety has been continuously improved. Silkworms have been developed into the optimal form for producing high quality silk and pupae. Recently, the production of transgenic silkworms has further expanded the possibility of industrial value of silkworms. Kynurenine 3-monooxygenase (KMO), which is a flavin enzyme, is known for its involvement in ommochrome pigment synthesis. In the field of mammals, including humans, previous studies have revealed the function and role of KMO, which is an important enzyme for various immune responses and cell protection. However, in the case of insects, the function of KMO has only been studied to be involved in the formation of pigment, and accordingly, KMO is used exclusively on screening for generation of transgenic insects as a marker. In this study, using KMO-edited silkworms, it was intended to discover the novel functions and roles of KMO in silkworms by identifying changes in the expression of various genes associated with stress and growth. The changes were observed in expressions of genes regulating on stresses to survive and those on ecdysteroid hormone between wild-type (WT) silkworms and kmo mutant silkworms. The loss of KMO, in particular, decreased the expression of the shadow (sad) gene, one of the Halloween genes in the synthesis of ecdysteroid. In conclusion, these results suggest that silkworm KMO is responsible for potential functions regarding stress response and ecdysteroid synthesis.

Screening Wheat Germplasm for high Amylose Content

  • Kyeong-Hoon Kim;Jinhee Park;Mina Kim;Kyeong-Min Kim;Yurim Kim;Go Eun Lee;Chon-Sik Kang;Jiyoung Shon;Jong-Min Ko
    • Proceedings of the Korean Society of Crop Science Conference
    • /
    • 2022.10a
    • /
    • pp.300-300
    • /
    • 2022
  • Wheat (Triticum spp.) is an important source of food worldwide and the focus of considerable efforts to identify new combinations of genetic diversity for crop improvement. In particular, wheat starch composition is a major target for changes that could benefit human health. Starches with increased levels of amylose are of interest because of the correlation between high amylose content and elevated levels of resistant starch, which has been shown to have beneficial effects on health for combating obesity and diabetes. In this study, high amylose wheat germplasms from other countries were collected and cultivated in Korea, and then the content of amylose was evaluated, we examined amylose content in 614 wheat germplasm. Furthermore, amylose content was validated using several milling processes such as roller, hammer, and grinding mill. As a result, the amylose content distribution was divided into five groups. The range of the amylose levels in whole wheat flour was 18.3% to 29.6%. In addition, the mutant lines were screened for high amylose, and two mutant lines (WX-1046 and WX-1074) exhibited a comparable amylose content to Keumkang whole wheat (19.6%). It has been established that high amylose indicated SS IIa null and necessitate GBSS. Based on these findings, it may be helpful to develop high amylose wheat germplasm and production techniques, particularly in Korea.

  • PDF