• Title/Summary/Keyword: Mutant Pichia stipitis

Search Result 7, Processing Time 0.022 seconds

Comprehensive Characterization of Mutant Pichia stipitis Co-Fermenting Cellobiose and Xylose through Genomic and Transcriptomic Analyses

  • Dae-Hwan Kim;Hyo-Jin Choi;Yu Rim Lee;Soo-Jung Kim;Sangmin Lee;Won-Heong Lee
    • Journal of Microbiology and Biotechnology
    • /
    • v.32 no.11
    • /
    • pp.1485-1495
    • /
    • 2022
  • The development of a yeast strain capable of fermenting mixed sugars efficiently is crucial for producing biofuels and value-added materials from cellulosic biomass. Previously, a mutant Pichia stipitis YN14 strain capable of co-fermenting xylose and cellobiose was developed through evolutionary engineering of the wild-type P. stipitis CBS6054 strain, which was incapable of co-fermenting xylose and cellobiose. In this study, through genomic and transcriptomic analyses, we sought to investigate the reasons for the improved sugar metabolic performance of the mutant YN14 strain in comparison with the parental CBS6054 strain. Unfortunately, comparative whole-genome sequencing (WGS) showed no mutation in any of the genes involved in the cellobiose metabolism between the two strains. However, comparative RNA sequencing (RNA-seq) revealed that the YN14 strain had 101.2 times and 5.9 times higher expression levels of HXT2.3 and BGL2 genes involved in cellobiose metabolism, and 6.9 times and 75.9 times lower expression levels of COX17 and SOD2.2 genes involved in respiration, respectively, compared with the CBS6054 strain. This may explain how the YN14 strain enhanced cellobiose metabolic performance and shifted the direction of cellobiose metabolic flux from respiration to fermentation in the presence of cellobiose compared with the CBS6054 strain.

Enhancement of Xylitol Yield by Xylitol Dehydrogenase Defective Mutant of Pichia stipitis (Pichia stipitis의 Xylitol Dehydrohenase Defective Mutant에 의한 Xylitol 수율 향사)

  • Kim, Min-Soo;Kim, Chul;Seo, Jin-Ho;Ryu, Yeon-Woo
    • KSBB Journal
    • /
    • v.15 no.2
    • /
    • pp.113-119
    • /
    • 2000
  • In order to produce xylitol with high yield, experiments were carried out to develope xylitol dehydrogenase (XDH) defective m mutant from Pichia stipitis and to investigate the xylit이 fermentation characteristics of mutant strain. After treatment of P s stipitis with EMS, mutant PXM-4 was selected based on the XDH activity and xylitol production capability. Among the tested c cosubstrates, galactose was selected as an adequate cosubstrate on xyl뻐I production of mutant PXM-4. With the increase of galactose concentration, xylitol production was decreased because the transport of xylose into cell was inhibited by g galactose. The optimal concentration of galactose for the production of xylitol using 20 g/L xylose was 20 g/L. Under this c condition, maximum concentration of xylitol and yield were 14.4 g/L and 97%, respectively. In order to prevent the inhibitory e effect of xylose transport by galactose, galactose was fed with low concentration and the concentration of xylitol produced w was increased up to 25 g/L. In the fermentation of corn cob hydrolyzate by mutant PXM-4, xylose was completely converted t to xylit이 with a 100% yield in 4 days culture.

  • PDF

Enhancement of Xylitol Production Yield by Xylitol Dehydrogenase Defective Mutant of Pichia stipitis (Pichia stipitis의 Xylitol Dehydrogenase Defective Mutant에 의한 Xylitol 생산 수율 향상)

  • Kim, Min-Soo;Kim, Chul;Seo, Jin-Ho;Ryu, Yeon-Woo
    • Korean Journal of Microbiology
    • /
    • v.37 no.2
    • /
    • pp.170-175
    • /
    • 2001
  • In order to produce xylitol with high yield, experiments were carried out to develope xylitol dehydrogenase(XDH) defective mutant from P. stipitis and to investigate the xylitol fermentation characteristics of mutant strain. After treatment of P. stipitis with EMS, mutant PXM-4 was selected based on te XDH activity and xylitol production capability. Among the tested cosubstrates, galactose was selected as an adequate cosub-strate on xylitol production of mutant PXM-4. But with the increase in the concentration of galactose in the medium, xylitol production was decreased because the transport of xylose into cell was inhibited by galactose. The optimal concentration of galactose for the production of xylitol using 20 g/ι xylose was 20 g/ι Under this condition, maximum concentration of xylitol and yield were 14.4 g/ι and 97%, respectively. In order to prevent the inhibitory effect of xylose transport by galactose, galactose was fed with low concentration and the concentration of xylitol produced was increased up to 25 g/ι.

  • PDF

High-Yield Production of Xylitol from Xylose by a Xylitol Dehydrogenase Defective Mutant of Pichia stipitis

  • Kim, Min-Soo;Chung, Yun-Seung;Seo, Jin-Ho;Jo, Do-Hyun;Park, Yun-Hee;Ryu, Yeon-Woo
    • Journal of Microbiology and Biotechnology
    • /
    • v.11 no.4
    • /
    • pp.564-569
    • /
    • 2001
  • This study was carried out in order to investigate the characteristics of xylitol fermentation by a xylitol dehydrogenase defective mutant PXM-4 of P stipitis CBS 5776 and to determime optimum conditions for the high yield ofxylitol production from xylose. Gluconic acid was selected as a co substrate for the xylitol fermentation, since gluconic acid neither blocked xylose transport nor repressed xylose reductase expression. An increase of gluconic acid concentration reduced the rates of xylitol production and cell growth by decreasing medium pH, and the optimal concentration of gluconic acid was determined to be 20 gll with approximately 100% xylitol conversion yield. A fed-batch cell culture resulted in a 44.8 g/l xylitol concentration with 100% yield, based on the amount of xylose consumed.

  • PDF