• Title/Summary/Keyword: Musical Score Recognition

Search Result 14, Processing Time 0.027 seconds

Musical Score Recognition with SOM and Enhanced ART-1 (SOM과 개선된 ART-1을 이용한 악보 인식)

  • Kim, Kwang-Baek
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.17 no.5
    • /
    • pp.1064-1069
    • /
    • 2013
  • In this paper, we propose a Musical Score Recognition with SOM and Enhanced ART-1 Algorithm. First, we apply Hough transform and Otsu's binarization to the original BMP format image and extract notes from separated passages by histogram analysis with removing staff lines. Then extracted musical notes are normalized to same size by SOM algorithm and ART-1 algorithm plays the learning and recognition role. The experiment verifies that the proposed method is quite effective on printed musical score recognition.

Musical Score Recognition Using Hierarchical ART2 Algorithm (Hierarchical ART2 알고리즘을 이용한 악보 인식)

  • Kim, Kwang-Baek;Woo, Young-Woon
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.13 no.10
    • /
    • pp.1997-2003
    • /
    • 2009
  • Methods for effective musical score recognition and efficient editing of musical scores are demanded because functions of computers for researches on musical activities become more and more important parts in recent days. In the conventional methods for handling musical scores manually, there are weak points such as incorrect score symbols in input process and requirement of much time to adjust the incorrect symbols. And also there is another weak point that the scores edited by each application program can be remodified by a specific application program only. In this paper, we proposed a method for automatic musical score recognition of printed musical scores in order to make up for the weak points. In the proposed method, staffs in a scanned score image are eliminated by horizontal histogram, noises are removed by 4 directional edge tracking algorithm, and then musical score symbols are extracted by using Grassfire algorithm. The extracted symbols are recognized by hierarchical ART2 algorithm. In order to evaluate the performance of the proposed method, we used 100 musical scores for experiment. In the experiment, we verified that the proposed method using hierarchical ART2 algorithm is efficient.

Score Image Retrieval to Inaccurate OMR performance

  • Kim, Haekwang
    • Journal of Broadcast Engineering
    • /
    • v.26 no.7
    • /
    • pp.838-843
    • /
    • 2021
  • This paper presents an algorithm for effective retrieval of score information to an input score image. The originality of the proposed algorithm is that it is designed to be robust to recognition errors by an OMR (Optical Music Recognition), while existing methods such as pitch histogram requires error induced OMR result be corrected before retrieval process. This approach helps people to retrieve score without training on music score for error correction. OMR takes a score image as input, recognizes musical symbols, and produces structural symbolic notation of the score as output, for example, in MusicXML format. Among the musical symbols on a score, it is observed that filled noteheads are rarely detected with errors with its simple black filled round shape for OMR processing. Barlines that separate measures also strong to OMR errors with its long uniform length vertical line characteristic. The proposed algorithm consists of a descriptor for a score and a similarity measure between a query score and a reference score. The descriptor is based on note-count, the number of filled noteheads in a measure. Each part of a score is represented by a sequence of note-count numbers. The descriptor is an n-gram sequence of the note-count sequence. Simulation results show that the proposed algorithm works successfully to a certain degree in score image-based retrieval for an erroneous OMR output.

Improved Lexicon-driven based Chord Symbol Recognition in Musical Images

  • Dinh, Cong Minh;Do, Luu Ngoc;Yang, Hyung-Jeong;Kim, Soo-Hyung;Lee, Guee-Sang
    • International Journal of Contents
    • /
    • v.12 no.4
    • /
    • pp.53-61
    • /
    • 2016
  • Although extensively developed, optical music recognition systems have mostly focused on musical symbols (notes, rests, etc.), while disregarding the chord symbols. The process becomes difficult when the images are distorted or slurred, although this can be resolved using optical character recognition systems. Moreover, the appearance of outliers (lyrics, dynamics, etc.) increases the complexity of the chord recognition. Therefore, we propose a new approach addressing these issues. After binarization, un-distortion, and stave and lyric removal of a musical image, a rule-based method is applied to detect the potential regions of chord symbols. Next, a lexicon-driven approach is used to optimally and simultaneously separate and recognize characters. The score that is returned from the recognition process is used to detect the outliers. The effectiveness of our system is demonstrated through impressive accuracy of experimental results on two datasets having a variety of resolutions.

A Study on the Printed Music Note Recognition (인쇄된 악보의 음표인식에 관한 연구)

  • Lee, C.H.;Kwon, H.Y.;Lee, S.H.;Kim, B.S.
    • Proceedings of the KIEE Conference
    • /
    • 1992.07a
    • /
    • pp.427-430
    • /
    • 1992
  • In this paper, we proposed an algorithm for the musical note recognition. Firstly, a given bit-mapped music score image is converted to a set of individual note pattern images via vertical projection. Then, the pitch of a note is determinal by comparison in the note-head position with the reference five-lines. Also, the length of a note is found via leader clustering with a set of normalized note patterns. Finally, a datafile to play the music is obtained using the pitch and length of musical notes. Experimental results with a simple musical score image show that the proposed scheme is performed well.

  • PDF

Musical Genre Classification Based on Deep Residual Auto-Encoder and Support Vector Machine

  • Xue Han;Wenzhuo Chen;Changjian Zhou
    • Journal of Information Processing Systems
    • /
    • v.20 no.1
    • /
    • pp.13-23
    • /
    • 2024
  • Music brings pleasure and relaxation to people. Therefore, it is necessary to classify musical genres based on scenes. Identifying favorite musical genres from massive music data is a time-consuming and laborious task. Recent studies have suggested that machine learning algorithms are effective in distinguishing between various musical genres. However, meeting the actual requirements in terms of accuracy or timeliness is challenging. In this study, a hybrid machine learning model that combines a deep residual auto-encoder (DRAE) and support vector machine (SVM) for musical genre recognition was proposed. Eight manually extracted features from the Mel-frequency cepstral coefficients (MFCC) were employed in the preprocessing stage as the hybrid music data source. During the training stage, DRAE was employed to extract feature maps, which were then used as input for the SVM classifier. The experimental results indicated that this method achieved a 91.54% F1-score and 91.58% top-1 accuracy, outperforming existing approaches. This novel approach leverages deep architecture and conventional machine learning algorithms and provides a new horizon for musical genre classification tasks.

The recognition of Printed Music Score and Performance Using Computer Vision system (컴퓨터 비젼 시스템에 의한 인쇄악보의 인식과 연주)

  • 이명우;최종수
    • Journal of the Korean Institute of Telematics and Electronics
    • /
    • v.22 no.5
    • /
    • pp.10-16
    • /
    • 1985
  • In this paper, a computer vision system, which catches printed music score image using CCTV camera and microcomputer, and then recognizes the image and performs tar music with speaker, is discussed. Integral projection method is adopted for feature detection and recognition of the music score image. The range of recognition is con(ined to staffs, perpen-dicular lines and musical notes including chord notes among the various kinds of elements of music score. The practical recognition algorithm considering noises, the preprocessing processes getting rid of noises are also showed, and simple hardware system playing chord is made, In the results, good recognition ratio and performance are obtained.

  • PDF

Music Recognition by Partial Template Matching (부분적 템플릿 매칭을 활용한 악보인식)

  • Yoo, Jae-Myeong;Kim, Gi-Hong;Lee, Guee-Sang
    • The Journal of the Korea Contents Association
    • /
    • v.8 no.11
    • /
    • pp.85-93
    • /
    • 2008
  • For music score recognition, several approaches have been proposed including shape matching, statistical methods, neural network based methods and structural methods. In this paper, we deal with recognition for low resolution images which are captured by the digital camera of a mobile phone. Considerable distortions are included in these low resolution images, so when existing technology is used, many problems appear. First, captured images are not stable in the sense that they contain lots of distortions or non-uniform illumination changes. Therefore, notes or symbols in the music score are damaged and recognition process gets difficult. This paper presents recognition technology to overcome these problems. First, musical note to head, stick, tail part are separated. Then template matching on head part of musical note, and remainder part is applied. Experimental results show nearly 100% recognition rate for music scores with single musical notes.

Design of Music Learning Assistant Based on Audio Music and Music Score Recognition

  • Mulyadi, Ahmad Wisnu;Machbub, Carmadi;Prihatmanto, Ary S.;Sin, Bong-Kee
    • Journal of Korea Multimedia Society
    • /
    • v.19 no.5
    • /
    • pp.826-836
    • /
    • 2016
  • Mastering a musical instrument for an unskilled beginning learner is not an easy task. It requires playing every note correctly and maintaining the tempo accurately. Any music comes in two forms, a music score and it rendition into an audio music. The proposed method of assisting beginning music players in both aspects employs two popular pattern recognition methods for audio-visual analysis; they are support vector machine (SVM) for music score recognition and hidden Markov model (HMM) for audio music performance tracking. With proper synchronization of the two results, the proposed music learning assistant system can give useful feedback to self-training beginners.

Camera-based Music Score Recognition Using Inverse Filter

  • Nguyen, Tam;Kim, SooHyung;Yang, HyungJeong;Lee, GueeSang
    • International Journal of Contents
    • /
    • v.10 no.4
    • /
    • pp.11-17
    • /
    • 2014
  • The influence of acquisition environment on music score images captured by a camera has not yet been seriously examined. All existing Optical Music Recognition (OMR) systems attempt to recognize music score images captured by a scanner under ideal conditions. Therefore, when such systems process images under the influence of distortion, different viewpoints or suboptimal illumination effects, the performance, in terms of recognition accuracy and processing time, is unacceptable for deployment in practice. In this paper, a novel, lightweight but effective approach for dealing with the issues caused by camera based music scores is proposed. Based on the staff line information, musical rules, run length code, and projection, all regions of interest are determined. Templates created from inverse filter are then used to recognize the music symbols. Therefore, all fragmentation and deformation problems, as well as missed recognition, can be overcome using the developed method. The system was evaluated on a dataset consisting of real images captured by a smartphone. The achieved recognition rate and processing time were relatively competitive with state of the art works. In addition, the system was designed to be lightweight compared with the other approaches, which mostly adopted machine learning algorithms, to allow further deployment on portable devices with limited computing resources.