• Title/Summary/Keyword: Music Segment Detection

Search Result 4, Processing Time 0.02 seconds

Detection of Music Mood for Context-aware Music Recommendation (상황인지 음악추천을 위한 음악 분위기 검출)

  • Lee, Jong-In;Yeo, Dong-Gyu;Kim, Byeong-Man
    • The KIPS Transactions:PartB
    • /
    • v.17B no.4
    • /
    • pp.263-274
    • /
    • 2010
  • To provide context-aware music recommendation service, first of all, we need to catch music mood that a user prefers depending on his situation or context. Among various music characteristics, music mood has a close relation with people‘s emotion. Based on this relationship, some researchers have studied on music mood detection, where they manually select a representative segment of music and classify its mood. Although such approaches show good performance on music mood classification, it's difficult to apply them to new music due to the manual intervention. Moreover, it is more difficult to detect music mood because the mood usually varies with time. To cope with these problems, this paper presents an automatic method to classify the music mood. First, a whole music is segmented into several groups that have similar characteristics by structural information. Then, the mood of each segments is detected, where each individual's preference on mood is modelled by regression based on Thayer's two-dimensional mood model. Experimental results show that the proposed method achieves 80% or higher accuracy.

Emotion-based music visualization using LED lighting control system (LED조명 시스템을 이용한 음악 감성 시각화에 대한 연구)

  • Nguyen, Van Loi;Kim, Donglim;Lim, Younghwan
    • Journal of Korea Game Society
    • /
    • v.17 no.3
    • /
    • pp.45-52
    • /
    • 2017
  • This paper proposes a new strategy of emotion-based music visualization. Emotional LED lighting control system is suggested to help audiences enhance the musical experience. In the system, emotion in music is recognized by a proposed algorithm using a dimensional approach. The algorithm used a method of music emotion variation detection to overcome some weaknesses of Thayer's model in detecting emotion in a one-second music segment. In addition, IRI color model is combined with Thayer's model to determine LED light colors corresponding to 36 different music emotions. They are represented on LED lighting control system through colors and animations. The accuracy of music emotion visualization achieved to over 60%.

Music Genre Classification based on Musical Features of Representative Segments (대표구간의 음악 특징에 기반한 음악 장르 분류)

  • Lee, Jong-In;Kim, Byeong-Man
    • Journal of KIISE:Software and Applications
    • /
    • v.35 no.11
    • /
    • pp.692-700
    • /
    • 2008
  • In some previous works on musical genre classification, human experts specify segments of a song for extracting musical features. Although this approach might contribute to performance enhancement, it requires manual intervention and thus can not be easily applied to new incoming songs. To extract musical features without the manual intervention, most of recent researches on music genre classification extract features from a pre-determined part of a song (for example, 30 seconds after initial 30 seconds), which may cause loss of accuracy. In this paper, in order to alleviate the accuracy problem, we propose a new method, which extracts features from representative segments (or main theme part) identified by structure analysis of music piece. The proposed method detects segments with repeated melody in a song and selects representative ones among them by considering their positions and energies. Experimental results show that the proposed method significantly improve the accuracy compared to the approach using a pre-determined part.

Automatic Indexing Algorithm of Golf Video Using Audio Information (오디오 정보를 이용한 골프 동영상 자동 색인 알고리즘)

  • Kim, Hyoung-Gook
    • The Journal of the Acoustical Society of Korea
    • /
    • v.28 no.5
    • /
    • pp.441-446
    • /
    • 2009
  • This paper proposes an automatic indexing algorithm of golf video using audio information. In the proposed algorithm, the input audio stream is demultiplexed into the stream of video and audio. By means of Adaboost-cascade classifier, the continuous audio stream is classified into announcer's speech segment recorded in studio, music segment accompanied with players' names on TV screen, reaction segment of audience according to the play, reporter's speech segment with field background, filed noise segment like wind or waves. And golf swing sound including drive shot, iron shot, and putting shot is detected by the method of impulse onset detection and modulation spectrum verification. The detected swing and applause are used effectively to index action or highlight unit. Compared with video based semantic analysis, main advantage of the proposed system is its small computation requirement so that it facilitates to apply the technology to embedded consumer electronic devices for fast browsing.