• Title/Summary/Keyword: Mushroom cultivation house

Search Result 36, Processing Time 0.022 seconds

The study on enhanced micro climate of the oyster mushroom cultivation house with multi-layered shelves by using CFD analysis (CFD 분석에 의한 느타리버섯 재배사 환경균일성 향상 연구)

  • Lee, Sung-Hyoun;Yu, Byeong-Kee;Lee, Chan-Jung;Lim, Yeong-Taek
    • Journal of Mushroom
    • /
    • v.15 no.1
    • /
    • pp.14-20
    • /
    • 2017
  • The oyster mushroom cultivation house typically has multiple layers of growing shelves that cause the disturbance of air circulation inside the mushroom house. Due to this instability in the internal environment, growth distinction occurs according to the area of the growing shelves. It is known that minimal air circulation around the mushroom cap facilitates the metabolism of mushrooms and improves their quality. For the purpose of this study, a CFD analysis FLUENT R16 has been carried out to improve the internal environment uniformity of the oyster mushroom cultivation house. It is found that installing a section of the working passage towards the ceiling is to maintain the internal environment uniformity of the oyster mushroom cultivation house. When all the environment control equipment - including a unit cooler, an inlet fan, an outlet fan, an air circulation fan, and a humidifier - were operated simultaneously, the reported Root Mean Square (RMS) valuation the growing shelves were as follows: velocity 23.86%, temperature 6.08%, and humidity 2.72%. However, when only a unit cooler and an air circulation fan operated, improved RMS values on the growing shelves were reported as follows: velocity 23.54%, temperature 0.51%, and humidity 0.41%. Therefore, in order to maintain the internal environment uniformity of the mushroom cultivation house, it is essential to reduce the overall operating time of the inlet fan, outlet fan, and humidifier, while simultaneously appropriately manage the internal environment by using a unit cooler and an air circulation fan.

Economic Analysis of Pleurotus Eryngii Cultivation Facilities (큰느타리버섯 재배사의 경제성 분석)

  • Suh, Won-Myung;Yoon, Yong-Cheol
    • Journal of The Korean Society of Agricultural Engineers
    • /
    • v.48 no.6
    • /
    • pp.31-41
    • /
    • 2006
  • The analysis used in this work was cost-benefit analysis method. All future costs and returns of a given mushroom house were discounted to the time of initial investment (present) by means of 3.5% discount rate. Then the cost of ownership was compared to the return from the system. This analysis method has been developed and coded into a balance sheet for use on a EXCEL program. Using this programmed analysis,a large number of the case studies were examined using different combinations of economic conditions. These results will be very useful to individuals considering investment in a mushroom house, or any similar production system. By the way of the sensitivity analysis for each important parameter, the change of the marginal cost-benefit period could be finally determined. These parameters were typically construction cost of mushroom house, cost of cooling system, required cooling and heating energy amounts, unit price of mushroom media bottle, growing number of media bottles, production weight per unit bottle, sale price of mushroom, and annual number of growing period, etc.

Investigation of the shift trends of temperature and humidity in greenhouses for oak mushroom cultivation (최근 국내 표고 재배사의 온도, 습도 변화 성향 조사)

  • Kim, Ji Eun;Kim, Jun Young;Ahn, Hong Seok;Kown, Hyuk Woo;Ko, Han Gyu;Kim, Seong Hwan
    • Journal of Mushroom
    • /
    • v.16 no.4
    • /
    • pp.342-346
    • /
    • 2018
  • The temperature and humidity of 49 greenhouses for oak mushroom cultivation were investigated for 5 years to analyze the trends in the change of these parameters according to the climate change in Korea. The 5-year average temperature and humidity were $24.7^{\circ}C$ and 60.5%, respectively, in sawdust media-based cultivation houses and $24.4^{\circ}C$ and 60.0%, respectively, in log-bed cultivation houses. The average temperature in the summer was $29.8^{\circ}C$ in 2016, $29.1^{\circ}C$ in 2017, and $33.3^{\circ}C$ in 2018 in the log-bed cultivation houses and $26.8^{\circ}C$ in 2016, $20.4^{\circ}C$ in 2017, and $24.2^{\circ}C$ in 2018 in the sawdust media-based cultivation houses. During the investigation, temperatures over $30^{\circ}C$ were detected in one cultivation house in spring and five such houses in summer. When classifying by cultivation type, temperatures over $30^{\circ}C$ were found in five log-bed cultivation houses and temperatures less than $20^{\circ}C$ were found in four log-bed cultivation houses in fall. This study shows that log-bed cultivation houses for oak mushroom need to be modified to cope with the climate change.

Development of a smart model for Lentinula edodes cultivation based on ICT (ICT 기반 표고버섯 스마트 재배시설 모델개발)

  • Kim, In-Yeop;Kwon, Hyeong-il;Hwang, In-Ho;Lee, Won-Ho;No, Jong-Hyun;Choi, Sun-Gyu;Ko, Han-Gyu;Koo, Chang-Duk
    • Journal of Mushroom
    • /
    • v.16 no.2
    • /
    • pp.125-129
    • /
    • 2018
  • In order to develop a smart cultivation facility based on ICT (Information Communication Technology), a cultivation house was selected. Sensor devices were installed to monitor any changes in the cultivation environment. A control panel was constructed to monitor and control the data on environmental changes collected by the sensors. To efficiently manage the proceedings of the cultivation environment, the cultivation process was divided into 4 stages. We designed an environmental control module using these processes. PC and mobile phone software were designed for remote monitoring and control to develop a smart cultivation system that can conveniently manage the cultivation environment and produce mushrooms in a more stable manner.

Effects of Production of Ever-bearing Strawberries Using Cool Air from Mushroom Cultivation House (버섯재배시설의 냉공기 이용이 사계성딸기 생산성에 미치는 영향)

  • Jeoung, Yun-Kyeoung;Park, Ju-Hyen;Ha, Tae Moon;Lee, Young-Suk;Seo, Myeong-Hoon;Kim, In-Chul
    • Journal of Bio-Environment Control
    • /
    • v.28 no.1
    • /
    • pp.28-37
    • /
    • 2019
  • We designed a system that can automatically collect, convey, and control cool air of $15^{\circ}C-20^{\circ}C$ containing carbon dioxide from a mushroom cultivation house to a strawberry plastic house. We recorded the temperature at various positions from July to August 2017. The average temperature of the green house during day and at night was maintained at $33^{\circ}C$ and $26^{\circ}C$, respectively. In the moveable three-tier cylindrical bed, the average temperature around root was maintained at $26^{\circ}C$ and $21^{\circ}C$ during day and at night, respectively. On the high-bench in the green house, the temperature was maintained at $32^{\circ}C$ and $30^{\circ}C$ during day and at night, respectively. The carbon dioxide concentration was maintained around 800-1,600 ppm in the mushroom cultivation system and 400-800 ppm in the strawberry plastic house. The growth characteristics of the strawberry treated with moveable three-tier cylindrical bed were significantly different from those of the untreated high-bench bed. In addition, during the summer season, moveable three-tier cylindrical bed showed more tendency to increase in normal fruit number (NFN) and to decrease in defective fruit number (DFN) compare to the high-bench bed. Therefore, the moveable three-tier cylindrical bed showed a tendency to be more than 2 times higher yields than that of the high-bench bed. It was confirmed that ever-bearing strawberry cultivars could be cultivated in green house due to the cool air supply from the mushroom cultivation system in the summer season.

Development of Remote Monitoring and Control Systems in Bottle Cultivation Environments of Oyster Mushrooms (느타리 병버섯 재배사 원격환경 모니터링 및 제어시스템 개발)

  • Lee, Sung-Hyoun;Yu, Byeong-Kee;Lee, Chan-Jung;Yun, Nam-Kyu
    • Journal of Mushroom
    • /
    • v.15 no.3
    • /
    • pp.118-123
    • /
    • 2017
  • This study was carried out to develop the technology to manage the growth of mushrooms, which were cultivated based on long-term information obtained from quantified data. In this study, hardware that monitored and controlled the growth environment of the mushroom cultivation house was developed. An algorithm was also developed to grow mushrooms automatically. Environmental management for the growth of mushrooms was carried out using cultivation sites, computers, and smart phones. To manage the environment of the mushroom cultivation house, the environmental management data from farmers cultivating the highest quality mushrooms in Korea were collected and a growth management database was created. On the basis of the database value, the management environment for the test cultivar (hukthali) was controlled at $0.5^{\circ}C$ with 3-7% relative humidity and 10% carbon dioxide concentration. As a result, it was possible to produce mushrooms that were almost similar to those cultivated in farms with the best available technology.

Analysis of Environmental Factors in Pleurotus eryngii Cultivation House(III) -Based on Panel Type Structure- (새송이버섯 재배사의 환경인자 계측(III) -영구재배사를 중심으로-)

  • Suh, Won-Myung;Yoon, Yong-Cheol
    • Proceedings of the Korean Society of Agricultural Engineers Conference
    • /
    • 2005.10a
    • /
    • pp.187-192
    • /
    • 2005
  • Pleurotus eryngii(King oyster) is one of the most promising mushrooms being produced on the domestic farms. The quality as well as quantity of Eryngii is sensitively affected by micro climate factors. To safely produce high-quality Eryngii all the year round, it is required that the environmental factors be carefully controlled by well designed structures equipped with various facilities and control systems. This study was carried out at the commercial mushroom cultivation houses to find out reasonable range of each environmental factor and yield together with economic and safe structures influencing on the optimal productivity of Eryngii. This experiment was conducted from Nov. 10, 2004 to Aug. 27, 2005 in Eryngii. cultivation houses. The environmental factors measured for this study were inside/outside temperature, relative humidity and $CO_2$ concentration in Pleurotus eryngii medium. In addition, the yield and quality of mushroom were made investigation. But the optimal productivity will be evaluated by considering the quality and quantity of mushroom production, energy requirements, facility construction and management cost, etc.

  • PDF

Mushroom growth and cultivation environment at cultivation house of vinyl bag cultivation Shiitake mushroom on high-temperature period (고온기 표고 톱밥재배용 재배사 내의 환경 제어시스템과 버섯생육 온도)

  • Jhune, Chang-Sung;Kong, Won Sik;Park, Hye-Sung;Cho, Jae-Han;Lee, Kang-Hyo
    • Journal of Mushroom
    • /
    • v.12 no.4
    • /
    • pp.263-269
    • /
    • 2014
  • Although sawdust cultivation of shiitake (Lentinula edodes) is becoming more common, it is insufficiently competitive in spring and autumn, the best time to breed shiitake. Thus, it is urgently needed to develop a technique for all year round cultivation of shiitake using mushroom growing beds. In the present study, the temperature changes according to the location of shiitake cultivation facilities were investigated. We confirmed that a refrigerator, an air conditioner, triple membranes, shiitake cultivation beds, fog nozzles which were installed in the shiitake cultivation facilities play an important role in keeping the low temperature. Bag cultivation of shiitake was tested in temperature variation from $14^{\circ}C$ to $29^{\circ}C$ with a $3^{\circ}C$ interval to know its cultivating temperature range in hot summer season. In summary, the sawdust cultivation of shiitake is possible when the temperature difference between top and bottom is maintained below $1^{\circ}C$. And the temperature of the shiitake cultivation facilities should be maintained below $23^{\circ}C$ in the induction period for fruitbody formation.

Analysis of Environment Factors in Pleurotus eryngii Cultivation House (새송이버섯 재배사의 환경요인 분석)

  • Yoon, Yong-Cheol;Suh, Won-Myung;Lee, Hyun-Woo
    • Journal of Bio-Environment Control
    • /
    • v.12 no.4
    • /
    • pp.200-206
    • /
    • 2003
  • Pleurotus eryngii(King oyster) is one of the most promising mushrooms produced on the domestic farms. The quality as well as quantity of Eryngii is sensitively affected by micro climate factors such as temperature, relative humidity, $CO_2$ concentration, and light intensity. To safely produce high-quality Eryngii all the year round, it is required that the environmental factors be carefully controlled by well designed structures equipped with various facilities and control systems. At the commercial mushroom cultivation house(A,B), this study was carried out to find out reasonable range of each environmental factor and yield together with economic and safe structures influencing on the optimal productivity of Eryngii. this experiment was conducted for about two-month from Nov. 11, 2002 to Dec. 30, 2002 in Eryngii. cultivation house-A, B. Ambient temperature during the experiment period was not predominantly different from that of a normal year. The capacity of the hot water boiler and the piping systems were not enough. Maximum air temperature difference between the upper and lower growth stage during a heating time zone was about 2~3$^{\circ}C$. The max. and min. relative humidity were ranged approximately 60~100%, and average relative humidity was ranged approximately 80~100%. And $CO_2$concentration increased until maximum 1,600~1,800 ppm with the passing growing period. The illuminance in cultivation house was widely distributed from 20lx to 160 lx in accordance with position, and it was maintained lower than the recommended illuminance range 100~200 lx. The average yield per bottle was about 67~85g. But the optimal productivity will be evaluated by considering the quality and quantity of mushroom production, energy requirements, facility construction and management cost, etc.

A New Report on Edible Tropical Bolete, Phlebopus spongiosus in Thailand and Its Fruiting Body Formation without the Need for a Host Plant

  • Kumla, Jaturong;Suwannarach, Nakarin;Lumyong, Saisamorn
    • Mycobiology
    • /
    • v.48 no.4
    • /
    • pp.263-275
    • /
    • 2020
  • Phlebopus spongiosus is a well-known edible ectomycorrhizal mushroom indigenous to southern Vietnam. The mushroom specimens collected from northern Thailand in this study were identified as P. spongiosus. This identification was based on morphological characteristics and the multi-gene phylogenetic analyses. Pure cultures were isolated and the relevant suitable mycelial growth conditions were investigated. The results indicated that the fungal mycelia grew well on L-modified Melin-Norkans, and Murashige and Skoog agar all of which were adjusted to a pH of 5.0 at 30 ℃. Sclerotia-like structures were observed on cultures. The ability of this mushroom to produce fruiting bodies in the absence of a host plant was determined by employing a bag cultivation method. Fungal mycelia completely covered the cultivation substrate after 90-95 days following inoculation of mushroom spawn. Under the mushroom house conditions, the highest amount of primordial formation was observed after 10-15 days at a casing with soil:vermiculite (1:1, v/v). The primordia developed into a mature stage within one week. Moreover, identification of the cultivated fruiting bodies was confirmed by both morphological and molecular methods. This is the first record of P. spongiosus found in Thailand and its ability to form fruiting bodies without a host plant.