• Title/Summary/Keyword: Muscle-type nicotinic acetylcholine receptors

Search Result 1, Processing Time 0.019 seconds

Inhibitory Effects of Quercetin on Muscle-type of Nicotinic Acetylcholine Receptor-Mediated Ion Currents Expressed in Xenopus Oocytes

  • Lee, Byung-Hwan;Shin, Tae-Joon;Hwang, Sung-Hee;Choi, Sun-Hye;Kang, Ji-Yeon;Kim, Hyeon-Joong;Park, Chan-Woo;Lee, Soo-Han;Nah, Seung-Yeol
    • The Korean Journal of Physiology and Pharmacology
    • /
    • v.15 no.4
    • /
    • pp.195-201
    • /
    • 2011
  • The flavonoid quercetin is a low molecular weight compound generally found in apple, gingko, tomato, onion and other red-colored fruits and vegetables. Like other flavonoids, quercetin has diverse pharmacological actions. However, relatively little is known about the influence of quercetin effects in the regulation of ligand-gated ion channels. Previously, we reported that quercetin regulates subsets of nicotinic acetylcholine receptors such as ${\alpha}3{\beta}4$, ${\alpha}7$ and ${\alpha}9{\alpha}10$. Presently, we investigated the effects of quercetin on muscle-type of nicotinic acetylcholine receptor channel activity expressed in Xenopus oocytes after injection of cRNA encoding human fetal or adult muscle-type of nicotinic acetylcholine receptor subunits. Acetylcholine treatment elicited an inward peak current ($I_{ACh}$) in oocytes expressing both muscle-type of nicotinic acetylcholine receptors and co-treatment of quercetin with acetylcholine inhibited $I_{ACh}$. Pre-treatment of quercetin further inhibited $I_{ACh}$ in oocytes expressing adult and fetal muscle-type nicotinic acetylcholine receptors. The inhibition of $I_{ACh}$ by quercetin was reversible and concentration-dependent. The $IC_{50}$ of quercetin was $18.9{\pm}1.2{\mu}M$ in oocytes expressing adult muscle-type nicotinic acetylcholine receptor. The inhibition of $I_{ACh}$ by quercetin was voltage-independent and non-competitive. These results indicate that quercetin might regulate human muscle-type nicotinic acetylcholine receptor channel activity and that quercetin-mediated regulation of muscle-type nicotinic acetylcholine receptor might be coupled to regulation of neuromuscular junction activity.