• Title/Summary/Keyword: Muscle satellite cell

Search Result 43, Processing Time 0.02 seconds

Principal protocols for the processing of cultured meat

  • Lee, Seung Yun;Kang, Hea Jin;Lee, Da Young;Kang, Ji Hyeop;Ramani, Sivasubramanian;Park, Sungkwon;Hur, Sun Jin
    • Journal of Animal Science and Technology
    • /
    • v.63 no.4
    • /
    • pp.673-680
    • /
    • 2021
  • The purpose of this study was to establish a basic principal procedure for the processing of cultured meat. The first stage involved isolating satellite cells from the desired muscle of an animal using enzymatic digestion (i.e., by using proteases, collagenases, and pronases). The second stage involved culturing the isolated muscle satellite cells in a growth medium containing fetal bovine serum and penicillin/streptomycin with growth factors for an optimal period of time. The second stage involved a basic method for the isolated muscle cells to proliferate while sub-culturing to further induce differentiation in gelatin-coated culture dishes with the general culture medium. The third stage involved the induction of differentiation of muscle satellite cells or formation of myotubes using myogenic medium. Lastly, the fourth stage involved the identification of cell differentiation or myotube formation (myogenesis) using fluorescent dyes. Moreover, the principle of these protocols can be applied to perform primary culture of animal cells. This study will assist beginners with the technical aspects of culturing meat (isolation, cultivation, and differentiation of muscle satellite cells as well as identification of myotube formation for myogenesis).

Factors Influencing Satellite Cell Activity during Skeletal Muscle Development in Avian and Mammalian Species

  • Nierobisz, Lidia S;Mozdziak, Paul E
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.21 no.3
    • /
    • pp.456-464
    • /
    • 2008
  • Avian and mammalian skeletal muscles exhibit a remarkable ability to adjust to physiological stressors induced by growth, exercise, injury and disease. The process of muscle recovery following injury and myonuclear accretion during growth is attributed to a small population of satellite cells located beneath the basal lamina of the myofiber. Several metabolic factors contribute to the activation of satellite cells in response to stress mediated by illness, injury or aging. This review will describe the regenerative properties of satellite cells, the processes of satellite cell activation and highlight the potential role of satellite cells in skeletal muscle growth, tissue engineering and meat production.

Isolation, Culture and Identification of Porcine Skeletal Muscle Satellite Cells

  • Li, Bo-jiang;Li, Ping-hua;Huang, Rui-hua;Sun, Wen-xing;Wang, Han;Li, Qi-fa;Chen, Jie;Wu, Wang-jun;Liu, Hong-lin
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.28 no.8
    • /
    • pp.1171-1177
    • /
    • 2015
  • The objective of this study was to establish the optimum protocol for the isolation and culture of porcine muscle satellite cells. Mononuclear muscle satellite cells are a kind of adult stem cell, which is located between the basal lamina and sarcolemma of muscle fibers and is the primary source of myogenic precursor cells in postnatal muscle. Muscle satellite cells are a useful model to investigate the mechanisms of muscle growth and development. Although the isolation and culture protocols of muscle satellite cells in some species (e.g. mouse) have been established successfully, the culture system for porcine muscle satellite cells is very limited. In this study, we optimized the isolation procedure of porcine muscle satellite cells and elaborated the isolation and culture process in detail. Furthermore, we characterized the porcine muscle satellite cells using the immunofluorecence. Our study provides a reference for the isolation of porcine muscle satellite cells and will be useful for studying the molecular mechanisms in these cells.

Development of a High-Yield Isolation Protocol Optimized for the Retrieval of Active Muscle Satellite Cells from Mouse Skeletal Muscle Tissue

  • Hyun Lee;Na Rae Han;Seong Jae Kim;Jung Im Yun;Seung Tae Lee
    • International Journal of Stem Cells
    • /
    • v.15 no.3
    • /
    • pp.283-290
    • /
    • 2022
  • Background and Objectives: Difficulties often encountered in separating and purifying active muscle satellite cells (MSCs) from skeletal muscle tissues have limited the supply of cells for muscle therapy and artificial meat production. Here, we report an effective isolation protocol to economically and conveniently retrieve active MSCs from skeletal muscle tissues in mice. Methods and Results: We optimized an enzyme-based tissue digestion protocol for isolating skeletal muscle-derived primary cell population having a large number of active MSCs and described a method of differential plating (DP) for improving purity of active MSCs from skeletal muscle-derived primary cell population. Then, the age of the mouse appropriate to the isolation of a large number of active MSCs was elucidated. The best isolation yield of active MSCs from mouse skeletal muscle tissues was induced by the application of DP method to the primary cell population harvested from skeletal muscle tissues of 2-week-old mice digested in 0.2% (w/v) collagenase type II for 30 min at 37℃ and then in 0.1% (w/v) pronase for 5 min at 37℃. Conclusions: The protocol we developed not only facilitates the isolation of MSCs but also maximizes the retrieval of active MSCs. Our expectation is that this protocol will contribute to the development of original technologies essential for muscle therapy and artificial meat industrialization in the future.

Steroid Effects on Cell Proliferation, Differentiation and Steroid Receptor Gene Expression in Adult Bovine Satellite Cells

  • Lee, Eun Ju;Choi, Jinho;Hyun, Jin Hee;Cho, Kyung-Hyun;Hwang, Inho;Lee, Hyun-Jeong;Chang, Jongsoo;Choi, Inho
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.20 no.4
    • /
    • pp.501-510
    • /
    • 2007
  • The present study was conducted to establish primary bovine muscle satellite cell (MSC) culture conditions and to investigate the effects of various steroid hormones on transcription of the genes involved in muscle cell proliferation and differentiation. Of three different types of proteases (type II collagenase, pronase and trypsin-EDTA) used to hydrolyze the myogenic satellite cells from muscle tissues, trypsin-EDTA treatment yielded the highest number of cells. The cells separated by hydrolysis with type II collagenase and incubated on gelatin-coated plates showed an enhanced cell attachment onto the culture plate and cell proliferation at an initial stage of cell growth. In this study, the bovine MSCs were maintained in vitro up to passage 16 without revealing any significant morphological change, and even to when the cells died at passage 21 with decreased or almost no cell growth or deformities. When the cells were incubated in a steroid-depleted environment (DMEM(-)/10% CDFBS (charcoal-dextran stripped FBS)), they grew slowly initially, and were widened and deformed. In addition, when the cells were transferred to an incubation medium containing steroid (DMEM(+)/10% FBS), the deformed cells resumed their growth and returned to a normal morphology, suggesting that steroid hormones are crucial in maintaining normal MSC morphology and growth. The results demonstrated that treatments with 19-nortestosterone and testosterone significantly increased AR gene expression (p<0.05), implying that both testosterone and 19-nortestosterone bind with AR and that the hormone bound-AR complex up-regulates the genes of its own receptor (AR) plus other genes involved in satellite cell growth and differentiation in bovine muscle.

Effect of Low-Energy Laser Irradiation on the Proliferation and Gene Expression of Myoblast Cells (저출력 레이져 자극이 근육세포의 증식 및 유전자 발현에 미치는 효과)

  • Kwag, J.H.;Jeon, O.H.;Kang, D.Y.;Ryu, H.H.;Kim, K.H.;Jung, B.J.;Kim, C.H.
    • Journal of Biomedical Engineering Research
    • /
    • v.31 no.1
    • /
    • pp.81-86
    • /
    • 2010
  • Laser irradiation is known to affect various tissues such as skin, bone, nerve, and skeletal muscle. Laser irradiation promotes ATP synthesis, facilitates wound healing, and stimulates cell proliferation and angiogenesis. In skeletal muscle, laser irradiation is related to the proliferation of skeletal muscle satellite cells. Normal skeletal muscle contains remodeling capacity from myogenic cells that are derived from mononuclear satellite cells. Their processes are activated by the expression of genes related with myogenesis such as muscle-specific transcription factors (MyoD and Myf5) and VEGF (vascular endothelial growth factor). In this study, we hypothesized that laser irradiation would enhance and regulate muscle cell proliferation and regeneration through modulation of the gene expressions related with the differentiation of skeletal muscle satellite cells. $C_2C_{12}$ myoblastic cells were exposed to continuous/non-continuous laser irradiation (660nm/808nm) for 10 minutes daily for either 1 day or 5 days. After laser irradiation, cell proliferation and gene expression (MyoD, Myf5, VEGF) were quantified. Continuous 660nm laser irradiation significantly increased cell proliferation and gene expression compared to control, continuous 808nm laser irradiation, and non-continuous 660nm laser irradiation groups. These results indicate that continuous 660nm laser irradiation can be applied to the treatment and regeneration of skeletal muscle tissue.

Effect of fermented sarco oyster extract on age induced sarcopenia muscle repair by modulating regulatory T cells

  • Kyung-A Byun;Seyeon Oh;Sosorburam Batsukh;Kyoung-Min Rheu;Bae-Jin Lee;Kuk Hui Son;Kyunghee Byun
    • Fisheries and Aquatic Sciences
    • /
    • v.26 no.6
    • /
    • pp.406-422
    • /
    • 2023
  • Sarcopenia is an age-related, progressive skeletal muscle disorder involving the loss of muscle mass and strength. Previous studies have shown that γ-aminobutyric acid (GABA) from fermented oysters aids in regulatory T cells (Tregs) cell expansion and function by enhancing autophagy, and concomitantly mediate muscle regeneration by modulating muscle inflammation and satellite cell function. The fermentation process of oysters not only increases the GABA content but also enhances the content of branched amino acids and free amino acids that aid the level of protein absorption and muscle strength, mass, and repair. In this study, the effect of GABA-enriched fermented sarco oyster extract (FSO) on reduced muscle mass and functions via Treg modulation and enhanced autophagy in aged mice was investigated. Results showed that FSO enhanced the expression of autophagy markers (autophagy-related gene 5 [ATG5] and GABA receptor-associated protein [GABARAP]), forkhead box protein 3 (FoxP3) expression, and levels of anti-inflammatory cytokines (interleukin [IL]-10 and transforming growth factor [TGF]-β) secreted by Tregs while reducing pro-inflammatory cytokine levels (IL-17A and interferon [IFN]-γ). Furthermore, FSO increased the expression of IL-33 and its receptor IL-1 receptor-like 1 (ST2); well-known signaling pathways that increase amphiregulin (Areg) secretion and expression of myogenesis markers (myogenic factor 5, myoblast determination protein 1, and myogenin). Muscle mass and function were also enhanced via FSO. Overall, the current study suggests that FSO increased autophagy, which enhanced Treg accumulation and function, decreased muscle inflammation, and increased satellite cell function for muscle regeneration and therefore could decrease the loss of muscle mass and function with aging.

Transcriptional Profiling of Differentially Expressed Genes in Porcine Satellite Cell

  • Jeong, Jin Young;Kim, Jang Mi;Rajesh, Ramanna Valmiki;Suresh, Sekar;Jang, Gul Won;Lee, Kyung-Tai;Kim, Tae Hun;Park, Mina;Jeong, Hak Jae;Kim, Kyung Woon;Cho, Yong Min;Lee, Hyun-Jeong
    • Reproductive and Developmental Biology
    • /
    • v.37 no.4
    • /
    • pp.233-245
    • /
    • 2013
  • Muscle satellite cell (SC) is responsible for postnatal muscle growth, repair, and regeneration. Satellite cell is an important source of multi-potent stem cell process and differentiation into adipogenic, myogenic, and osteoblastogenic. The objective of this study was to identify alter of transcriptome during differentiation in porcine satellite cell and to elevated transcriptome at different stages of postnatal development to gain insight into the differences in differentiated PSC. We used RNA-seq technique to investigate the transcriptomes during differentiation in pig muscle. Sequence reads were obtained from Illumina HiSeq2000. Differentially expressed genes (DEG) were detected by EdgeR. Gene ontology (GO) terms are powerful tool for unification among representation genes or products. In study of GO biological terms, functional annotation clustering involved in cell cycle, apoptosis, extracellular matrix, phosphorylation, proteolysis, and cell signaling in differences stage. Taken together, these results would be contributed to a better understanding of muscle biology and processes underlying differentiation. Our results suggest that the source of DEGs could be better understanding of the mechanism of muscle differentiation and transdifferentiation.

Influence of co-culturing muscle satellite cells with preadipocytes on the differentiation of adipocytes and muscle cells isolated from Korean native cattle

  • Choi, Chang Weon
    • Korean Journal of Agricultural Science
    • /
    • v.45 no.4
    • /
    • pp.715-723
    • /
    • 2018
  • The present study was done to investigate the effect of co-culturing muscle satellite cells (MSCs) and intramuscular preadipocytes (IPs) on the differentiation of adipocytes and muscle cells isolated from Korean native cattle. MSCs and IPs were single-cultured in 10% fetal bovine serum/Dulbecco's modified Eagles medium (FBS/DMEM) for 48 h followed by culturing in 5% FBS/DMEM as the growth media. Then, the growth media was replaced by differentiation media composed of 2% FBS/DMEM without any additives for the single- or co-culture of muscle cells and intramuscular adipocytes to induce the differentiation of both cell types. Cell differentiation was measured by morphological investigation and cytosolic enzyme analysis of glycerol-3-phosphate dehydrogenase (GPDH) for the adipocytes and creatine kinase (CK) for the muscle cells. In the morphological test, the presence of muscle cells did not stimulate adipocyte differentiation showing more differentiation of the adipocytes in the single-culture compared to the co-culture condition. However, the differentiation of muscle cells was promoted by adipocytes in the co-culture. The results of the enzymatic analysis were highly associated with the morphological results with a statistically higher GPDH activity (p < 0.05) appearing in the single-culture than in the co-culture, whereas the opposite was true for the CK activity of the muscle cells (p < 0.05). By manipulating in vivo the milieu using a co-culture, we could detect the difference in the rate of cell differentiation and suggest that a co-culture system is a more reliable and precise technique compared to a single-culture. Further studies on various co-culture trials including supplementation of differentiating substances, gene expression analysis, etc. should be done to obtain practical and fundamental data.

Myogenic Satellite Cells and Its Application in Animals - A Review

  • Singh, N.K.;Lee, H.J.;Jeong, D.K.;Arun, H.S.;Sharma, L.;Hwang, I.H.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.22 no.10
    • /
    • pp.1447-1460
    • /
    • 2009
  • Myogenic satellite cells have been isolated and identified by several recently elucidated molecular markers. Furthermore, knowledge about the precise function of these markers has provided insight into the early and terminal events of satellite cells during proliferation, differentiation, transdifferentiation, specification and activation. Recently, quiescent myogenic satellite cells have been associated with possession of Pax 3 and 7 that represent pluripotent stem cells capable of differentiating into other lineages. However, the mechanism by which myogenic satellite cells attain pluripotent potential remain elusive. Later, transdifferentiating ability of these cells to another lineage in the absence or presence of certain growth factor/ or agents has revolutionized the scope of these pluripotent myogenic satellite cells for manipulation of animal production (in terms of quality and quantity of muscle protein) and health (in terms of repair of skeletal muscle, cartilage or bone).