• Title/Summary/Keyword: Muscle glycogen

Search Result 165, Processing Time 0.02 seconds

Effects of Glycogen Supercompensation in Fast and Slow Muscles on Maximal Running Time of Endurance-trained Rats (단련한 흰쥐의 속근 및 지근에 Glycogen 과저장이 운동 지구력에 미치는 영향)

  • Yeoun, Dong-Soo;Hwang, Soo-Kwan;Kim, In-Sook;Ko, Seong-Kyeong;Nam, Taick-Sang;Kang, Doo-Hee
    • The Korean Journal of Physiology
    • /
    • v.22 no.1
    • /
    • pp.63-77
    • /
    • 1988
  • This study was carried out to investigate relationships between maximal running time (MRT) and glycogen supercompensation in fast twitch white fibers (white vastus, WV), fast twitch red fibers (red vastus, RV) and slow twitch red fibers (soleus muscle, SM) of endurance-trained rats. Male rats of a Sprague-Dawley strain were divided into the trained groups and untrained groups. Untrained groups were acquired to run on the treadmill 10 minutes for 3 days and remained rest and maintained with mixed diet for 4 weeks. For last 10 days of resting period, the untrained rats were divided into 3 groups i.e. mixed diet (untrained control), high and low carbohydrate (CHO) diet groups. And each group was subdivided into 2 groups, one group was tested for the MRT and the other was sacrificed to measure the blood glucose, blood lactate, glycogen contents of liver and muscles. The experimental groups were trained on treadmill by a modified method of Constable et al. (1984) maintained with mixed diet for 4 weeks. After measurement of MRT of this group, they were also divided into high and low CHO groups and fed with these diet for 2 days and MRT of each group was measured again to see the effect of high or low CHO feeding on the MRT. Each group was maintained with the same diet for next 2 days during which some of the rats were sacrificed at given time intervals for the measurements of blood glucose and lactate, liver and the muscles glycogen. The results were summarized as follows; 1) In the untrained group, there were no significant differences between subgroups in MRT, glycogen conent of SM, RV and WV. But blood glucose concentration and glycogen content of liver of low CHO group were significantly lower than those of mixed diet group. 2) The MRT and glycogen content of SM, RV and WV of trained mixed diet group were significantly increased compared to those of untrained mixed diet group, but there was no significant difference in glycogen content of liver. 3) MRT of trained mixed, high CHO and low CHO groups were $137{\pm}9.8,\;176{\pm}9.8\;and\;129{\pm}7.3\;min$ respectively with the significant difference between them. 4) There were no differences in blood lactate concentrations between the trained high and low CHO groups immediately after maximal running and during recovery period. 5) Glycogen contents in RV and SM of trained high CHO group were significantly increased, and glycogen contents in RV, WV and liver of trained low CHO group were significantly decreased compared to those of trained mixed diet group. 6) Immediately after maximal running, the blood glucose concentrations of trained high CHO and low CHO groups were $73{\pm}4.0\;and\;67{\pm}6.9mg%$ respecitively. The blood glucose of the trained high CHO group was fully recovered within one hour by feeding. But blood glucose concentration of low CHO group was slowly recovered up to $114{\pm}4.1mg%$ after two hours of feeding and maintained. Those values were still significantly lower than that of trained mixed diet group. The synthetic rates of glycogen in liver and muscles during the recovery period followed the similar time course of the blood glucose recoveries in each group. These results suggest that an increase in MRT of trained high CHO group was attributed to the glycogen supercompensation in slow twitch muscle fibers. And a decrease in MRT of trained low CHO may be due to decreased glycogen contents of liver and muscles. The results also suggest that glycogen supercompensation was more evident in slow twitch red fibers of endurance-trained rats and blood glucose is one of the limiting factors of glycogen synthesis.

  • PDF

The Effects of Hyperglycemia and Hyperlipidemia on Muscle Glycogen Utilization during Exercise in Rats (흰쥐에서 고혈당 및 고지질혈증이 운동 중 골격근 당원이용에 미치는 영향)

  • Ahn, Jong-Chul;Lee, Dong-Woo;Shon, Oog-Jin;Lee, Seuk-Kang
    • Journal of Yeungnam Medical Science
    • /
    • v.16 no.1
    • /
    • pp.34-42
    • /
    • 1999
  • The effects of hyperglycemia and hyperlipidemia on utilization of muscle glycogen during 45 minute Session of treadmill running(26 m/min, 8% grade) were evaluated using Sprague Dawley rats, and the characteristics of the 4 different type of muscles, I.e., soleus, white and red gastrocnemius, and plantaris, on glycogen utilization were simultaneously investigated. Hyperglycemia was induced by 145-165 mg/dL of oral glucose administration, and hyperlipidemia was induced by combined treatment of intraperitoneal heparine injection of 444 uEq/L and 10 % intralipose oral adminstration. During the hyperglycemic trial, the glycogen utilization of plantaris muscle was decreased by 13 % in 45 minute session of treadmill running compared to the control trial(p<0.05), and the glycogen utilization of white gastrocnemius was also decreased. The sparing tendency of glycogen was observed in soleus and red gastrocnemius by 5-13 % during 30 and 45 minute session of treadmill running in hyperglycemic trial. There was no glycogen sparing effect of hyperlipidemia in soleus, red gastrocnemius and plantaris muscle subjected in this experiment during exercise. However, only a slight sparing tendency of white gastrocnemius muscle was observed. In summary, the glycogen sparing effect of hyperglycemia during exercise was observed in plantaris and white gastrocnemius muscles in rats. However, there was no glycogen sparing effect of hyperlipidemia in the 4 hindlimb muscles. It was observed that the glycogen sparing effect of hyperglycemia is more prominent in fast glycolytic muscle fibers.

  • PDF

The Charateristics of Glycogen Metabolism of Diaphragm in Rats (운동부하시 흰쥐 호흡근의 당원 대사)

  • Nam, Bok-Hyun;Kim, Eun-Jung;Lee, Suck-Kang
    • Journal of Yeungnam Medical Science
    • /
    • v.14 no.1
    • /
    • pp.46-52
    • /
    • 1997
  • Diaphragm is thought to play the most important role in breathing and has a substantially greater proportion of slow oxidative and fast glycolytic fibers, and low proportion of fast oxidative fibers. The respiratory muscle, diaphragm, has the functional characteristics of slow speed of contraction, high resistance to fatigue and the ability to respond to intermittent ventilatory loads, for example of exercise. In the present study, the characteristics of the metabolism (depletion and repletion) of glycogen and the structural changes of diaphragm during depletion and repletion of glycogen were observed in rats. For comparison, the red gastrocnemius muscle which has a greater proportion of fast oxidative glycolytic (FOG) and slow oxidative (SO) fibers, and low proportion of fast glycolytic (FG) fiber, was also studied. The glycogen concentration of diaphragm in overnight fasted rats was $2.30{\pm}0.14mg/gm$ wet weight. The values of glycogen concentration at 60, 90 and 120minutes of treadmill exercise loaded rats was significantly decreased compared to that of the overnight fasted rats. There was no significant difference among the glycogen concentrations of diaphragm at 60, 90 and 120minutes of exercises. The glycogen concentration of diaphragm was decreased to $1.12{\pm}0.17$ from $2.30{\pm}0.14mg/gm$ wet weight by treadmill exercise. The glycogen depletion rate of diaphragm during exercise was faster than that of red gastrocnemius in both of the first 60minutes and 120minutes duration of exercise. The glycogen repletion of diaphragm after intragastric glucose administration by stomach tube was studied in control and exercise groups. The glycogen concentration was significantly increased after glucose administration in both of control and exercise groups. All of the concentration of exercise group at 60, 120 and 180minutes after glucose administration was significantly higher than those of control group. In conclusion, one of the characteries of diaphragm in glycogen metabolism is fast glycogen depletion during exercise, and slowness of glycogen repletion after glucose ingestion in rats.

  • PDF

Effects of Dietary Fatty Acid Composition on Pro- and Macro-Glycogen Utilization and Resynthesis in Rat Skeletal Muscle (식이 지방산 종류가 운동 시 조직 내 Pro-및 Macro-Glycogen의 동원 및 재합성에 미치는 영향)

  • Lee, Jong-Sam;Kim, Jae-Chul;Kwon, Young-Woo;Lee, Jang-Kyu;Lee, Jeong-Pil;Yoon, Chung-Soo
    • Journal of Nutrition and Health
    • /
    • v.40 no.3
    • /
    • pp.211-220
    • /
    • 2007
  • The purpose of this study was to investigate that the effect of dietary fatty acid composition on pro- and macro-glycogen utilization and resynthesis. The analyses were further extended for different muscle fibers (type I, type II, & type IIb) as well as tissues (i.e., liver & heart). Total one hundred sixty Sprague-Dawley rats were used, and rats were randomly allocated into four experimental groups: animals fed standard chow diet (n=40), animals fed saturated fatty acid diet (n=40), animals fed monounsaturated fatty acid (n=40), and animals fed polyunsaturated fatty acid (n=40). Animals in each groups were further divided into five subgroups: sacrificed at REST (n=8), sacrificed at immediately after 3 hr swim exercise (P-0HR, n=8), sacrificed at one hour after 3 hr swim exercise (P-1HR, n=8), sacrificed at four hour after 3 hr swim exercise (P-4HR, n=8), and sacrificed at twenty-four hour after 3 hr swim exercise (P-24HR, n=8). Soleus (type I), red gastrocnemius (type IIa), white gastrocnemius (type IIb), liver, and heart were dissected out at appropriated time point from all animals, and were used for analyses of pro- & macro-glycogen concentrations. After 8 weeks of dietary interventions, there was no significant difference in body mass in any of dietary conditions (p>.05). After 3 hr swim exercise, blood lactate level was higher compared to resting conditions in all groups, but it was returned to resting value after 1 hr rest (p<.05). Free fatty acid concentration was higher in all high fat fed groups(regardless of fatty acid composition) than CHOW consumed group. At rest, pro- & macro-glycogen concentration was not different from any of experimental groups (p>.05). Regardless of forms of glycogen, the highest level was observed in liver (p<.01), and most cases of supercompensation after 3hr exercise observed in this study were occurred in CHOW fed tissues. Except heart muscle, all tissues used in this study showed that pro- and macro-glycogen concentration was significantly decreased after 3 hr exercise. Based on these results, two conclusions were made: first, there is no different level of glycogen content in various tissues regardless of types of fatty acids consumed and second, the highest mobilization rate would be demonstrated from CHOW fed animals compare to animals that consumed any kinds of fatty acid diet if prolonged exercise is applied.

Anesthetic management for dental surgery in a child with glycogen storage disease type IIIa: a case report

  • Bugra, Aykenar;Nedim, Cekmen
    • Journal of Dental Anesthesia and Pain Medicine
    • /
    • v.22 no.6
    • /
    • pp.451-455
    • /
    • 2022
  • Glycogen storage disease (GSD) is a group of inherited disorders, which result in the deficiency of enzymes involved in glycogen metabolism, leading to an accumulation of glycogen in various organs. Deficiency of amylo-1-6-glicosidase (debranching enzyme) causes glycogen storage disease type III (GSD III). The main problems that anesthesiologists face in patients with GSD III include hypoglycemia, muscle weakness, delayed awakening due to abnormal liver function, possible difficulty in airway, and cardiomyopathy. In the face of these difficulties, airway preparation and appropriate glucose monitoring and support during the fasting period are important. The doses of the drugs to be used should be calculated considering the increased volume of distribution and decreased metabolic activity of the liver. We present the case of a child with GSD IIIa who underwent dental prosedation under general anesthesia. She was also being prepared for liver transplantation. This case was additionally complicated by the patient's serious allergic reaction to eggs and milk.

The Effect of Ginseng on Muscle Injury and Inflammation

  • Alvarez, A.I.;De Oliveira, A.C. Cabral;Perez, A.C.;Vila, L.;Ferrando, A.;Prieto, J.G.
    • Journal of Ginseng Research
    • /
    • v.28 no.1
    • /
    • pp.18-26
    • /
    • 2004
  • The effect of Panax ginseng administration in muscle inflammatory process induced after eccentric exercise, that causes myofibrillar disruption, was studied. Changes in lipid peroxidation, inflammation, glycogen levels in muscle and release of myocellular proteins to blood were measured. The analyses were performed immediately after eccentric exercise and over week since this period are necessary for the muscle damage-repair cycle. The ginseng extract (100 mg kg$^{-1}$ ) was orally administered to rats for three months, before the eccentric exercise performance. The results showed the protective role of ginseng against skeletal muscle damage. This effect could be associated with their membrane stabilising capacity since creatine kinase (CK) activity was significantly decreased 96 h post-exercise from 523$\pm$70 to 381$\pm$53 and 120 h post-exercise from 443$\pm$85 to 327$\pm$75 in treated animals. $\beta$-glucuronidase activity, as indicator of inflammation, showed a significant reduction of about 15-25% in soleus, vastus and triceps in these post-exercise times. The lipid peroxidation, measured by malondyaldehyde levels, was significantly decreased in the 24 h post-exercise period in soleus and vastus intermedius muscles and on the recovery period. Finally ginseng administration reduced significantly the decrease of the glycogen levels immediately after exercise and when the regenerative process took place (72-168 h post exercise). Collectively, the results have showed that ginseng did not inhibit the vital inflammatory response process associated with the muscle damage-repair cycle but presumably ameliorate the injury.

The Effect of Ginseng on Muscle Injury and Inflammation

  • Alvarez A.I.;Oliveira A. C. Cabral de;Perez A.C.;Vila L.;Ferrando A.;Prieto J.G.
    • Proceedings of the Ginseng society Conference
    • /
    • 2002.10a
    • /
    • pp.159-175
    • /
    • 2002
  • The effect of Panax ginseng administration in muscle inflammatory process induced after eccentric exercise, that causes myofibrillar disruption, was studied. Changes in lipid peroxidation, inflammation, glycogen levels in muscle and release of myocellular proteins to blood were measured. The analyses were performed immediately after eccentric exercise and over week since this period are necessary for the muscle damage-repair cycle. The ginseng extract $(100\;mg\;kg^{-1})$ was orally administered to rats for three months, before the eccentric exercise performance. The results showed the protective role of ginseng against skeletal muscle damage. This effect could be associated with their membrane stabilising capacity since creatine kinase (CK) activity was significantly decreased 96 h post-exercise from $523{\pm}70\;to\;381{\pm}53$ and 120 h post-exercise from $443{\pm}85\;to\;327{\pm}75$ in treated animals. ${\beta}-glucuronidase$ activity, as indicator of inflammation, showed a significant reduction of about $15-25\%$ in soleus, vastus and triceps in these post-exercise times. The lipid peroxidation, measured by malondyaldehyde levels, was significantly decreased in the 24 h postexercise period in soleus and vastus intermedius muscles and on the recovery period. Finally ginseng administration reduced significantly the decrease of the glycogen levels immediately after exercise and when the regenerative process took place (72-168 h post exercise). Collectively, the results have showed that ginseng did not inhibit the vital inflammatory response process associated with the muscle damage-repair cycle but presumably ameliorate the injury.

  • PDF

Effect of Neuromuscular Electrical Stimulation(NMES) on the Ultrastructure of Skeletal Muscle in Rats (신경근전기자극이 흰쥐 골격근의 미세구조에 미치는 영향)

  • Park, Jang-Sung;Park, Chun-Man
    • Journal of the Korean Academy of Clinical Electrophysiology
    • /
    • v.1 no.1
    • /
    • pp.57-72
    • /
    • 2003
  • This study conducts electrical stimulation to male white rat of Spargue-Dawley which is 7 weeks, has the weight of 240 g and is seemingly healthy for one or two weeks by means of neuromuscular electrical stimulator in order to examine the effects of neuromuscular electrical stimulation on its gastrocnemius, measures change of weight of gastrocnemius, serum and enzyme activity and then obtains the following conclusions. There is little difference in AST and CPK of weight and serum of gastrocnemius after one or two weeks of conducting neuromuscular electrical stimulation in all experimental groups. On the one hand, as a result of histochemical observation, NMES I group showed hypertrophy of perimysium and increase of sectional diameter of muscle fiber compared to comparison group, but NMES II group showed a similar result to comparison group. When ultrasubstructure was observed under electron microscope, I-type muscle fiber of NMES I group showed well-arranged mitochondria and it was similar to comparison group. II-type muscle fiber showed a large quantity of glycogen granules within sarcoplasmatic and the extension of luminal of T-tubule. I-type muscle fiber of NMES II group had small mitochondria and showed the vacuolar degeneration of mitochondria and extended T-tubule. II-type muscle fiber showed the extension of agranule cytoplasma reticulum with T-tubule and the reduction of amount of glycogen granule within partial sarcoplasmatic.

  • PDF

Comparison of Muscle Atrophy Induced by Cast Fixation, Denervation and Suspension of Rat Hindlimb (흰쥐의 후지 석고 고정, 탈신경 및 부유에 의한 근위축의 비교)

  • Yoon, Bum-Chul;Lee, Myoung-Hwa;Kim, Nan-Soo;Hong, Hye-Jung;Yu, Byong-Kyu
    • The Journal of Korean Physical Therapy
    • /
    • v.13 no.3
    • /
    • pp.665-675
    • /
    • 2001
  • The aim of this study was to compare features of muscle atrophy induced by cast fixation. denervation and suspension of rat hindimb. Muscle mass and glycogen of the soleus and plantaris muscles were studied after 3, 7, or 14 days of cast fixation, denervation and suspension. The results as follows: 1. Body weight of rats decreased significantly after 3 days and showed gradually increase after 7 and 14 days of hindlimb cast fixation, denervation and suspension. Particularly hindlimb suspended rats showed a rapid decrease after 3 days in body weight. 2. Relative weight of soleus and plantaris musclcs decreased significantly by hindlimb cast fixation, denervation and suspension, particularly after 7 days. The decrease rate was the lowest in suspended rats. 3. Glycogen content of soleus muscle decreased significantly after 14 days of hindlimb cast fixation, denervation and suspension. Also glycogen content of plantaris muscle decreased significantly after 14 days of hindlimb cast fixation and denervation, but not significantly after hindlimb suspension. These results indicate that suspension of hindlimb muscles causes less atropy than cast fixation or denervation, likely due to maintainment a few activities during hindlimb suspension. We concluded that the decrease in mechanical strains imposed on the muscle during inactivity was the main factor for the development of atrophy. These basic data suggest that some experimental conditions such as electrostimulation or stretching, participate in countermeasure programmes.

  • PDF

Effect of Electrical Stimulation on the Denervated Muscle of the Albino Rat. Sprague-Dawley (전기자극이 흰쥐 탈신경 근육의 위축에 미치는 영향)

  • Lee, Jae-Hyoung;Lee, Kyung-Ro
    • The Journal of Korean Physical Therapy
    • /
    • v.2 no.1
    • /
    • pp.47-63
    • /
    • 1990
  • The purpose of this study was to determined the effect of low-frequency electrical stimulation on the denervated gastrocnemius muscles of the albino rats, Sprague-Dawley. Fifteen Sprague-Dawley adult male albino rats were divided into non-treated (normal) group, denervated (control) group, denervated and electrical stimulated (experiments). The gastrocnemius muscles of the right leg were submaximally stimulated with 30 Hz electrical stimulation. After 4-week period, the animals were sacrificed, and muscle were removed, fixed by immersion, and processed for light and electron microscopy. The numbers of Ag-NOR increased significantly (p<0.001), but significant reductions of girth(p<0.01), wet muscle weight (p<0.001), high glycogen content fiber (p<0.01), and mitochondrial number (p<0.05) were found in denervated control group. In comparison with control group, significant increase of right leg girth (p<0.05), wet muscle weight (p<0.001), high glycogen content fiber (p<0.05), numbers of Ag-NOR(p<0.001), number of mitochondria (p<0.01), mitochondrial volume found in electrical stimulated experimental group. The results suggest that the electrical stimulation of the muscle partially prevented the denervated atrophy in the rat gastrocnemius muscles.

  • PDF