• 제목/요약/키워드: Muscle cell

검색결과 1,122건 처리시간 0.029초

Surgical Anatomy of Temporalis Muscle Transfer with Fascia Lata Augmentation for the Reanimation of the Paralyzed Face: A Cadaveric Study

  • Yi Zhang;Johannes Steinbacher;Wolfgang J. Weninger;Ulrike M. Heber;Lukas Reissig;Erdem Yildiz;Chieh-Han J. Tzou
    • Archives of Plastic Surgery
    • /
    • 제50권1호
    • /
    • pp.42-48
    • /
    • 2023
  • Background The temporalis muscle flap transfer with fascia lata augmentation (FLA) is a promising method for smile reconstruction after facial palsy. International literature lacks a detailed anatomical analysis of the temporalis muscle (TPM) combined with fascia lata (FL) augmentation. This study aims to describe the muscle's properties and calculate the length of FL needed to perform the temporalis muscle flap transfer with FLA. Methods Twenty nonembalmed male (m) and female (f) hemifacial cadavers were dissected to investigate the temporalis muscle's anatomy. Results The calculated minimum length of FL needed is 7.03cm (f) and 5.99cm (m). The length of the harvested tendon is 3.16cm/± 1.32cm (f) and 3.18/± 0.73cm (m). The length of the anterior part of the temporalis muscle (aTPM) is 4.16/± 0.80cm (f) and 5.30/± 0.85cm (m). The length of the posterior part (pTPM) is 5.24/± 1.51cm (f) and 6.62/± 1.03cm (m). The length from the most anterior to the most posterior point (aTPMpTPM) is 8.60/± 0.98cm (f) and 10.18/± 0.79cm (m). The length from the most cranial point to the distal tendon (cTPMdT) is 7.90/± 0.43cm (f) and 9.79/± 1.11cm (m). Conclusions This study gives basic information about the temporalis muscle and its anatomy to support existing and future surgical procedures in their performance. The recommended minimum length of FL to perform a temporalis muscle transfer with FLA is 7.03cm for female and 5.99cm for male, and minimum width of 3 cm. We recommend harvesting some extra centimeters to allow adjusting afterward.

Circumferential Alignment of Vascular Smooth Muscle Cells in a Cylindrical Microchannel

  • Choi, Jong Seob;Piao, Yunxian;Kim, Kyung Hoon;Seo, Tae Seok
    • 한국진공학회:학술대회논문집
    • /
    • 한국진공학회 2013년도 제45회 하계 정기학술대회 초록집
    • /
    • pp.274.1-274.1
    • /
    • 2013
  • We report the circumferential alignment of human aortic smooth muscle cells (HASMCs) in an orthogonally micropatterned circular microfluidic channel to form an in vivo-like smooth muscle cell layer. To realize a biomimetic smooth muscle cell layer which is aligned perpendicular to the axis of blood vessel, we first fabricated a half-circular polydimethylsiloxane (PDMS) microchannel by soft lithography using a convex PDMS mold. The orthogonally micro wrinkle patterns were generated inside the half-circular microchannel by stretching-releasing operation under UV irradiation. Upon UV treatment with uniaxial 40 % stretch of a PDMS substrate and releasing process, the microwrinkle patterns perpendicular to the axial direction of the circular microchannel were generated, which could guide the circumferential alignment of HASMCs successfully during cultivation. The analysis of orientation angle, shape index, and contractile protein marker expression indicates that the cultured HASMCs revealed the in vivo-like cell phenotype. Finally, we produced circular microchannels by bonding two half-circular microchannels, and cultured the HASMCs circumferentially with high alignment and viability for 5 days. These results are the first demonstration for constructing an in vivo-like 3D smooth muscle cell layer in the circular microfluidic channel which can provide novel bioassay platforms for in-depth study of HASMC biology and vascular function.

  • PDF

가자(訶子) 추출물과 그 유효성분 갈산이 근분화에 미치는 영향 (Investigation of the effect of Terminalia chebula fruit extract and its active ingredient, gallic aicd on muscle differentiation)

  • 천성혜;이효성;한효상;김기광
    • 대한본초학회지
    • /
    • 제34권2호
    • /
    • pp.59-66
    • /
    • 2019
  • Objectives : Decrease in muscle mass and loss of muscle function due to aging are associated with various diseases. As interest in healthy aging increases, efforts to prevent and treat muscle hypoxia as an illness are increasing. Considering the physical limitations, a pharmacologic approach to the treatment of myopenia is needed. Methods : Terminalia chebula Rets has a wide range of pharmacological effects and is used as a medicinal product in traditional medicine. However, the drug effect on the treatment of muscle disorders has not been revealed. The purpose of this study was to evaluate the value of water extract of Terminalia chebula (WETC) as a therapeutic agent to relieve symptoms of muscle hypoxia. Results : WETC showed strong radical scavenging ability. In addition, WETC increased cell activity of myoblast, and we observed that WETC induces myoblast differentiation by immunoblot analysis using differentiation protein markers as well as cell morphology of myoblast. Based on these results, we examined the effect of chebulic acid, chebulagic acid, gallic acid, geraniin, and punicalagin on cell activity and differentiation of myoblasts. Gallic acid significantly increased cell activity of myoblast, and it was found to be an effective substance which not only induces myoblast differentiation but also promotes proliferation. Conclusions : We suggest that the WETC with antioxidant effect and its indicator gallic acid on cell activity, proliferation and differentiation of myoblast can be studied and developed as a food and medicine for prevention and treatment of various muscle diseases.

아연의 1차혈관평활근세포 증식에 대한 기능 (The function of zinc in the primary vascular smooth muscle cell proliferation in rats)

  • 조영은;권인숙
    • Journal of Nutrition and Health
    • /
    • 제53권6호
    • /
    • pp.563-569
    • /
    • 2020
  • Purpose: The vascular smooth muscle cells (VSMCs) in mature animals have implicated to play a major role in the progression of cardiovascular diseases such as atherosclerosis. This study aimed at optimizing the protocol in culturing primary VSMCs (pVSMCs) from rat thoracic aorta and investigating the effect of cellular zinc (Zn) deficiency on cell proliferation of the isolated pVSMCs. Methods: The thoracic aorta from 7-month-old Sprague Dawley rats was isolated, minced and digested by the enzymatic process of collagenase I and elastase, and then inoculated with the culture Dulbecco Modified Eagle Medium (DMEM) at 37℃ in an incubator. The primary cell culture morphology was observed using phase-contrast microscopy and cellular Zn was depleted using Chelex-100 resin (extracellular zinc depletion only) or 3 µM N,N,N',N'-tetrakis(2-pyridinylmethyl)-1,2-ethanediamine (TPEN) (extracellular and intracellular zinc depletion). Western blot analysis was used for the detection of SM22α and calponin as smooth muscle cell marker proteins and von Willebrand factor as endothelial cell marker protein to detect the culture purity. Cell proliferation by Zn depletion (1 day) was measured by MTT assay. Results: A primary culture protocol for pVSMCs from rat thoracic aorta was developed and optimized. Isolated cultures exhibited hill and valley morphology as the major characteristics of pVSMCs and expressed the smooth muscle cell protein markers, SM22α and calponin, while the endothelial marker von Willebrand factor was hardly detected. Zn deprivation for 1 day culture decreased rat primary vascular smooth muscle cell proliferation and this pattern was more prominent under severe Zn depletion (3 µM TPEN), while less prominent under mild Zn depletion (Chelexing). Conclusion: Our results suggest that cellular Zn deprivation decreased pVSMC proliferation and this may be involved in phenotypic modulation of pVSMC in the aorta.

Isolated temporalis muscle metastasis of renal cell carcinoma

  • Lee, Da Woon;Ryu, Hyeong Rae;Kim, Jun Hyuk;Choi, Hwan Jun;Ahn, Hyein
    • 대한두개안면성형외과학회지
    • /
    • 제22권1호
    • /
    • pp.66-70
    • /
    • 2021
  • Isolated head and neck metastasis of renal cell carcinoma (RCC) is relatively rare and metastasis to the temple area is very rare. Here, we present the case of a 51-year-old man who was diagnosed with RCC 2 years earlier and had a contralateral metastatic temple area lesion. The patient who was diagnosed with renal cell cancer and underwent a nephrectomy 2 years ago was referred to the plastic surgery department for a temple mass on the contralateral side. In the operative field, the mass was located in the temporalis muscle with a red-to-purple protruding shape. Biopsy of the mass revealed a metastatic RCC lesion. Computed tomography imaging showed a lobulated, contoured enhancing lesion. Positron emission tomography/computed tomography imaging showed high-fluorodeoxyglucose uptake in the right temporalis muscle. The patient underwent wide excision of the metastatic RCC including the temporalis muscle at the plastic surgery department. Skeletal muscle metastasis of head and neck lesions is extremely rare in RCC. Isolated contralateral temporalis muscle metastasis in RCC has not been previously reported in the literature. If a patient has a history of malignant cancer, plastic surgeons should always consider metastatic lesions of head and neck tumors. Because of its high metastatic ability and poor prognosis, it is very important to keep this case in mind.

miR-15b induced by platelet-derived growth factor signaling is required for vascular smooth muscle cell proliferation

  • Kim, Sunghwan;Kang, Hara
    • BMB Reports
    • /
    • 제46권11호
    • /
    • pp.550-554
    • /
    • 2013
  • The platelet-derived growth factor (PDGF) signaling pathway is essential for inducing a dedifferentiated state of vascular smooth muscle cells (VSMCs). Activation of PDGF inhibits smooth muscle cell (SMC)-specific gene expression and increases the rate of proliferation and migration, leading to dedifferentiation of VSMCs. Recently, microRNAs have been shown to play a critical role in the modulation of the VSMC phenotype in response to extracellular signals. However, little is known about microRNAs regulated by PDGF in VSMCs. Herein, we identify microRNA- 15b (miR-15b) as a mediator of VSMC phenotype regulation upon PDGF signaling. We demonstrate that miR-15b is induced by PDGF in pulmonary artery smooth muscle cells and is critical for PDGF-mediated repression of SMC-specific genes. In addition, we show that miR-15b promotes cell proliferation. These results indicate that PDGF signaling regulates SMC-specific gene expression and cell proliferation by modulating the expression of miR-15b to induce a dedifferentiated state in the VSMCs.

Regulation of toll-like receptors expression in muscle cells by exercise-induced stress

  • Park, Jeong-Woong;Kim, Kyung-Hwan;Choi, Joong-Kook;Park, Tae Sub;Song, Ki-Duk;Cho, Byung-Wook
    • Animal Bioscience
    • /
    • 제34권10호
    • /
    • pp.1590-1599
    • /
    • 2021
  • Objective: This study investigates the expression patterns of toll-like receptors (TLRs) and intracellular mediators in horse muscle cells after exercise, and the relationship between TLRS expression in stressed horse muscle cells and immune cell migration toward them. Methods: The expression patterns of the TLRs (TLR2, TLR4, and TLR8) and downstream signaling pathway-related genes (myeloid differentiation primary response 88 [MYD88]; activating transcription factor 3 [ATF3]) are examined in horse tissues, and horse peripheral blood mononuclear cells (PBMCs), polymorphonuclear cells (PMNs) and muscles in response to exercise, using the quantitative reverse transcription-polymerase chain reaction (qPCR). Expressions of chemokine receptor genes, i.e., C-X-C motif chemokine receptor 2 (CXCR2) and C-C motif chemokine receptor 5 (CCR5), are studied in PBMCs and PMNs. A horse muscle cell line is developed by transfecting SV-T antigen into fetal muscle cells, followed by examination of muscle-specific genes. Horse muscle cells are treated with stressors, i.e., cortisol, hydrogen peroxide (H2O2), and heat, to mimic stress conditions in vitro, and the expression of TLR4 and TLR8 are examined in stressed muscle cells, in addition to migration activity of PBMCs toward stressed muscle cells. Results: The qPCR revealed that TLR4 message was expressed in cerebrum, cerebellum, thymus, lung, liver, kidney, and muscle, whereas TLR8 expressed in thymus, lung, and kidney, while TLR2 expressed in thymus, lung, and kidney. Expressions of TLRs, i.e., TLR4 and TLR8, and mediators, i.e., MYD88 and ATF3, were upregulated in muscle, PBMCs and PMNs in response to exercise. Expressions of CXCR2 and CCR5 were also upregulated in PBMCs and PMNs after exercise. In the muscle cell line, TLR4 and TLR8 expressions were upregulated when cells were treated with stressors such as cortisol, H2O2, and heat. Migration of PBMCs toward stressed muscle cells was increased by exercise and oxidative stresses, and combinations of these. Treatment with methylsulfonylmethane (MSM), an antioxidant on stressed muscle cells, reduced migration of PBMCs toward stressed muscle cells. Conclusion: In this study, we have successfully cultured horse skeletal muscle cells, isolated horse PBMCs, and established an in vitro system for studying stress-related gene expressions and function. Expression of TLR4, TLR8, CXCR2, and CCR5 in horse muscle cells was higher in response to stressors such as cortisol, H2O2, and heat, or combinations of these. In addition, migration of PBMCs toward muscle cells was increased when muscle cells were under stress, but inhibition of reactive oxygen species by MSM modulated migratory activity of PBMCs to stressed muscle cells. Further study is necessary to investigate the biological function(s) of the TLR gene family in horse muscle cells.

저출력 레이져 자극이 근육세포의 증식 및 유전자 발현에 미치는 효과 (Effect of Low-Energy Laser Irradiation on the Proliferation and Gene Expression of Myoblast Cells)

  • 곽지현;전옥희;강동연;유현희;김경환;정병조;김지현
    • 대한의용생체공학회:의공학회지
    • /
    • 제31권1호
    • /
    • pp.81-86
    • /
    • 2010
  • Laser irradiation is known to affect various tissues such as skin, bone, nerve, and skeletal muscle. Laser irradiation promotes ATP synthesis, facilitates wound healing, and stimulates cell proliferation and angiogenesis. In skeletal muscle, laser irradiation is related to the proliferation of skeletal muscle satellite cells. Normal skeletal muscle contains remodeling capacity from myogenic cells that are derived from mononuclear satellite cells. Their processes are activated by the expression of genes related with myogenesis such as muscle-specific transcription factors (MyoD and Myf5) and VEGF (vascular endothelial growth factor). In this study, we hypothesized that laser irradiation would enhance and regulate muscle cell proliferation and regeneration through modulation of the gene expressions related with the differentiation of skeletal muscle satellite cells. $C_2C_{12}$ myoblastic cells were exposed to continuous/non-continuous laser irradiation (660nm/808nm) for 10 minutes daily for either 1 day or 5 days. After laser irradiation, cell proliferation and gene expression (MyoD, Myf5, VEGF) were quantified. Continuous 660nm laser irradiation significantly increased cell proliferation and gene expression compared to control, continuous 808nm laser irradiation, and non-continuous 660nm laser irradiation groups. These results indicate that continuous 660nm laser irradiation can be applied to the treatment and regeneration of skeletal muscle tissue.

Sarcopenia targeting with autophagy mechanism by exercise

  • Park, Sung Sup;Seo, Young-Kyo;Kwon, Ki-Sun
    • BMB Reports
    • /
    • 제52권1호
    • /
    • pp.64-69
    • /
    • 2019
  • The loss of skeletal muscle, called sarcopenia, is an inevitable event during the aging process, and significantly impacts quality of life. Autophagy is known to reduce muscle atrophy caused by dysfunctional organelles, even though the molecular mechanism remains unclear. Here, we have discuss the current understanding of exercise-induced autophagy activation in skeletal muscle regeneration and remodeling, leading to sarcopenia intervention. With aging, dysregulation of autophagy flux inhibits lysosomal storage processes involved in muscle biogenesis. AMPK-ULK1 and the $FoxO/PGC-1{\alpha}$ signaling pathways play a critical role in the induction of autophagy machinery in skeletal muscle, thus these pathways could be targets for therapeutics development. Autophagy has been also shown to be a critical regulator of stem cell fate, which determines satellite cell differentiation into muscle fiber, thereby increasing muscle mass. This review aims to provide a comprehensive understanding of the physiological role of autophagy in skeletal muscle aging and sarcopenia.

Principal protocols for the processing of cultured meat

  • Lee, Seung Yun;Kang, Hea Jin;Lee, Da Young;Kang, Ji Hyeop;Ramani, Sivasubramanian;Park, Sungkwon;Hur, Sun Jin
    • Journal of Animal Science and Technology
    • /
    • 제63권4호
    • /
    • pp.673-680
    • /
    • 2021
  • The purpose of this study was to establish a basic principal procedure for the processing of cultured meat. The first stage involved isolating satellite cells from the desired muscle of an animal using enzymatic digestion (i.e., by using proteases, collagenases, and pronases). The second stage involved culturing the isolated muscle satellite cells in a growth medium containing fetal bovine serum and penicillin/streptomycin with growth factors for an optimal period of time. The second stage involved a basic method for the isolated muscle cells to proliferate while sub-culturing to further induce differentiation in gelatin-coated culture dishes with the general culture medium. The third stage involved the induction of differentiation of muscle satellite cells or formation of myotubes using myogenic medium. Lastly, the fourth stage involved the identification of cell differentiation or myotube formation (myogenesis) using fluorescent dyes. Moreover, the principle of these protocols can be applied to perform primary culture of animal cells. This study will assist beginners with the technical aspects of culturing meat (isolation, cultivation, and differentiation of muscle satellite cells as well as identification of myotube formation for myogenesis).