• 제목/요약/키워드: Muscle Specific gene

검색결과 107건 처리시간 0.029초

Rheumatic Arthritis-induced Alteration of Morphology and Function in Muscles

  • Hong, Yun-Kyung;Kim, Joo-Heon;Javaregowda, Palaksha Kanive;Lee, Sang-Kil;Lee, Sang-Rae;Chang, Kyu-Tae;Hong, Yong-Geun
    • Reproductive and Developmental Biology
    • /
    • 제35권2호
    • /
    • pp.151-157
    • /
    • 2011
  • Clinical arthritis is typically divided into rheumatoid arthritis (RA) and osteoarthritis (OA). Arthritis-induced muscle weakness is a major problem in aged people, leading to a disturbance of balance during the gait cycle and frequent falls. The purposes of the present study were to confirm fiber type-dependent expression of muscle atrophy markers induced by arthritis and to identify the relationship between clinical signs and expression of muscle atrophy markers. Mice were divided into four experimental groups as follows: (1) negative control (normal), (2) positive control (CFA+acetic acid), (3) RA group (CFA+acetic acid+type II collagen), and (4) aging-induced OA group. DBQA/1J mice (8 weeks of age) were injected with collagen (50 ${\mu}g/kg$), and physiological (body weight) and pathological (arthritis score and paw thickness) parameters were measured once per week. The gastrocnemius muscle from animals in each group was removed, and the expression of muscle atrophy markers (MAFbx and MuRF1) and myosin heavy chain isoforms were analyzed by reverse transcription-polymerase chain reaction. No significant change in body weight occurred between control groups and collagen-induced RA mice at week 10. However, bovine type II collagen induced a dramatic increase in clinical score or paw thickness at week 10 (p<0.01). Concomitantly, the expression of the muscle atrophy marker MAFbx was upregulated in the RA and OA groups (p<0.01). A dramatic reduction in myosin heavy chain (MHC)-$I{\beta}$ was seen in the gastrocnemius muscles from RA and OA mice, while only a slight decrease in MHC-IIb was seen. These results suggest that muscle atrophy gene expression occurred in a fiber type-specific manner in both RA- and OA-induced mice. The present study suggests evidence regarding why different therapeutic interventions are required between RA and OA.

Isolation and Characterization of Lethal Mutation near the unc-29 (LG I) Region of Caenorhabditis elegans

  • 이진숙;안주홍
    • Animal cells and systems
    • /
    • 제2권1호
    • /
    • pp.123-131
    • /
    • 1998
  • The unc-29 region on the chromosome I of Caenorhabditis elegans has been mutagenized in order to obtain lethal mutations. In this screen, the uncoordinated phenotype of unc-29 (e193) mutant was used to identify any lethal mutations closely linked to the unc-29 gene, which encodes a subunit of nicotinic acetylcholine receptors. We have isolated six independent mutations (jh1 to jh6) out of approximately 5,200 ethyl methanesulfonate(EMS) treated haploids. Four of the six mutations demonstrated embryonic lethal phenotypes, while the other two showed embryonic and larval lethal phenotypes. Terminal phenotypes observed in two mutations (jh1 and jh2) indicated developmental defects specific to posterior part of embryos which appeared similar to the phenotypes observed in nob (no back end) mutants. Another mutation (jh4) resulted in an interesting phenotype of body-wall muscle degeneration at larval stage. These mutations were mapped by using three-factor crosses and deficiency mutants in this region. Here we report genetic analysis and characterization of these lethal mutations.

  • PDF

MicroRNA-1 in Cardiac Diseases and Cancers

  • Li, Jianzhe;Dong, Xiaomin;Wang, Zhongping;Wu, Jianhua
    • The Korean Journal of Physiology and Pharmacology
    • /
    • 제18권5호
    • /
    • pp.359-363
    • /
    • 2014
  • MicroRNAs (miRs) are endogenous ${\approx}22$-nt non-coding RNAs that participate in the regulation of gene expression at post-transcriptional level. MiR-1 is one of the muscle-specific miRs, aberrant expression of miR-1 plays important roles in many physiological and pathological processes. In this review, we focus on the recent studies about miR-1 in cardiac diseases and cancers. The findings indicate that miR-1 may be a novel, important biomarker, and a potential therapeutic target in cardiac diseases and cancers.

근세포 분화 조절에 관련된 특이 유전자에 관한 연구 (Studies on Specific Genes Related to the Regulation of Muscle Cell Differentiation)

  • 강성구;김상해
    • 한국동물학회지
    • /
    • 제35권3호
    • /
    • pp.287-294
    • /
    • 1992
  • 배양 중의 골격근 세포는 증식을 거쳐 세포융합을 통해 다핵세포로 분화되므로 세포분화의 연구에 좋은 모델로서 이용되고 있다. 이전 실험에서 근원세포 융합을 억제하는 단일클론항체(MII-3J31)가 제작되었으며(Kim et al., 1992)이 항체에 대한 항원은 분자량이 약 35 kDa인 세포막 단백질로 추정되었다. 본 실험에서는 13일 계배와 성체의 근섬유 mRNA에서 CDNA라이브러리를 제작하여 근원세포 분화에 특이적으로 나타나는 유전자를 추적하였다. 근원세포 융합에 관여하는 단백질에 대한 CDNA는 계배 13일 째의 근원세포 CDNA라이브러리에서 단일클론항체를 사용한 immunoscreening 방법을 이용하여 확인하였다. 이 CDNA의 크기는 약 1.5 kb였다. 한편 13일 계배와성체 근섬유 CDNA 라이브러 리를 이용하여 13일 계배에만 특이하게 유전자 발현 이 일어 나고 성체에서는 나타나지 않는 약 0.8 kb의 CDNA플 찾았다.

  • PDF

Characterization and Genetic Profiling of the Primary Cells and Tissues from Mandible of Mouse Fetus and Neonate

  • Kang, Jung-Han;Nam, Hyun;Park, Soon-Jung;Oh, Keun-Hee;Lee, Dong-Seup;Cho, Jae-Jin;Lee, Gene
    • International Journal of Oral Biology
    • /
    • 제32권1호
    • /
    • pp.13-22
    • /
    • 2007
  • The stem cell research is emerging as a cutting edge topic for a new treatment for many chronic diseases. Recently, dental stem cell would be possible for regeneration of tooth itself as well as periodontal tissue. However, the study of the cell characterization is scarce. Therefore, we performed the genetic profiling and the characterization of mouse fetus/neonate derived dental tissue and cell to find the identification during dental development. We separated dental arch from mandibles of 14.5 d fetal mice and neonate 0 d under the stereoscope, and isolated dental cells primarily from the tissues. Then, we examined morphology and the gene expression profiles of the primary cells and dental tissues from fetus/neonate and adult with RT-PCR. Primary dental cells showed heterogeneous but the majority was shown as fibroblast-like morphology. The change of population doubling time levels (PDLs) showed that the primary dental cells have growth potential and could be expanded under our culture conditions without reduction of growth rate. Immunocytochemical and flow cytometric analyses were performed to characterize the primary dental cell populations from both of fetus (E14.5) and neonate. Alpha smooth muscle actin (${\alpha}-SMA$), vimentin, and von Willebrand factor showed strong expression, but desmin positive cells were not detected in the primary dental cells. Most of the markers were not uniformly expressed, but found in subsets of cells, indicating that the primary dental cell population is heterogeneous, and characteristics of the populations were changed during culture period. And mesenchymal stem cell markers were highly expressed. Gene expression profile showed Wnt family and its related signaling molecules, growth factors, transcription factors and tooth specific molecules were expressed both fetal and neonatal tissue. The tooth specific genes (enamelin, amelogenin, and DSPP) only expressed in neonate and adult stage. These expression patterns appeared same as primary fetal and neonatal cells. In this study we isolated primary cells from whole mandible of fetal and neonatal mice. And we investigated the characteristics of the primary cells and the profile of gene expressions, which are involved in epithelial-mesenchymal interactions during tooth development. Taken together, the primary dental cells in early passages or fetal and neonatal mandibles could be useful stem cell resources.

Molecular Cloning and Expression of Grass Carp MyoD in Yeast Pichia pastoris

  • Wang, Lixin;Bai, Junjie;Luo, Jianren;Chen, Hong;Ye, Xing;Jian, Qing;Lao, Haihua
    • BMB Reports
    • /
    • 제40권1호
    • /
    • pp.22-28
    • /
    • 2007
  • MyoD, expressed in skeletal muscle lineages of vertebrate embryo, is one of muscle-specific basic helix-loop-helix (bHLH) transcription factors, which plays a key role in the determination and differentiation of all skeletal muscle lineages. In this study, a cDNA of grass carp MyoD was cloned and characterized from total RNA of grass carp embryos by RT-PCR. The full-length cDNA of grass carp MyoD is 1597 bp. The cDNA sequence analysis reveals an open reading frame of 825 bp coding for a protein of 275 amino acids, which includes a bHLH domain composed of basic domain (1-84th amino acids) and HLH domain (98-142th amino acids), without signal peptide. Then the MyoD cDNA of grass carp was cloned to yeast expression vector pPICZ$\alpha$A and transformed into P. pastoris GS115 strain, the recombinant MyoD protein with a molecular weight of about 31KD was obtained after inducing for 2d with 0.5% methanol in pH 8.0 BMGY medium, and the maximum yield was about 250 mg/L in shaking-flask fermentation. The results were expected to benefit for further studies on the crystal structure and physiological function of fish MyoD.

PCR-RFLP를 이용한 한우 Leptin gene의 유전자형 변이와 경제형질과의 관련성 분석 (Association of Genetic Missense Mutation and Economic Traits of Leptin Gene using PCR-RFLP in Korea C밟le(Han-Wo이)

  • 임현진;오재돈;공홍식;전광주;이학교;이승수;윤두학;김종대;조병욱
    • Journal of Animal Science and Technology
    • /
    • 제46권3호
    • /
    • pp.295-300
    • /
    • 2004
  • 본 연구는 도체성적을 보유하고 있는 제 31차, 32차 한우 후보종모우 집단 228두를 선발하여 DNA를 분리 정제 후 exon 2에 위치한 bovine leptin gene 염기서열 가운데 특정 염기서열을 갖는 2좌위의 primer를 합성하여 PCR 수행 후 PCR-product를 이용하여 2 종류의 제한효소 Kpn 2 I, Msp I 으로 반응시킨 후 두 가지 형태의 대립 유전자를 검정하여 경제형질과의 관련성을 분석하였다. PCR-RFLP를 통하여 얻어진 leptin gene의 유전자형 빈도는 Kpn2 I의 경우 C 유전자 빈도(0.25)보다 T 유전자 빈도(0.75)가 높게 나타났으며 Msp I으로 처리한 경우 M 유전자 빈도(0.35)보다 m 유전자 빈도(0.65)가 높게 나타났다. 통계적 분석을 통하여 각 유전자형에 대한 경제형질과의 관련성을 분석한 결과 제한효소 Kpn2 I으로 처리한 경우 도체율에서 CT 유전자형과 CC 유전자형 사이에 유의적 차이가 나타났으며(P < 0.05), Msp I의 경우 도체중 Mm 유전자형과 mm 유전자형 사이에 통계적 유의성이 나타났다(P < 0.05).

MicroRNAs in Human Diseases: From Cancer to Cardiovascular Disease

  • Ha, Tai-You
    • IMMUNE NETWORK
    • /
    • 제11권3호
    • /
    • pp.135-154
    • /
    • 2011
  • The great discovery of microRNAs (miRNAs) has revolutionized current cell biology and medical science. miRNAs are small conserved non-coding RNA molecules that post-transcriptionally regulate gene expression by targeting the 3' untranslated region of specific messenger RNAs for degradation or translational repression. New members of the miRNA family are being discovered on a daily basis and emerging evidence has demonstrated that miRNAs play a major role in a wide range of developmental process including cell proliferation, cell cycle, cell differentiation, metabolism, apoptosis, developmental timing, neuronal cell fate, neuronal gene expression, brain morphogenesis, muscle differentiation and stem cell division. Moreover, a large number of studies have reported links between alterations of miRNA homeostasis and pathological conditions such as cancer, psychiatric and neurological diseases, cardiovascular disease, and autoimmune disease. Interestingly, in addition, miRNA deficiencies or excesses have been correlated with a number of clinically important diseases ranging from cancer to myocardial infarction. miRNAs can repress the gene translation of hundreds of their targets and are therefore well-positioned to target a multitude of cellular mechanisms. As a consequence of extensive participation in normal functions, it is quite logical to ask the question if abnormalities in miRNAs should have importance in human diseases. Great discoveries and rapid progress in the past few years on miRNAs provide the hope that miRNAs will in the near future have a great potential in the diagnosis and treatment of many diseases. Currently, an explosive literature has focussed on the role of miRNA in human cancer and cardiovascular disease. In this review, I briefly summarize the explosive current studies about involvement of miRNA in various human cancers and cardiovascular disease.

Detection of copy number variation and selection signatures on the X chromosome in Chinese indigenous sheep with different types of tail

  • Zhu, Caiye;Li, Mingna;Qin, Shizhen;Zhao, Fuping;Fang, Suli
    • Asian-Australasian Journal of Animal Sciences
    • /
    • 제33권9호
    • /
    • pp.1378-1386
    • /
    • 2020
  • Objective: Chinese indigenous sheep breeds can be classified into the following three categories by their tail morphology: fat-tailed, fat-rumped and thin-tailed sheep. The typical sheep breeds corresponding to fat-tailed, fat-rumped, and thin-tailed sheep are large-tailed Han, Altay, and Tibetan sheep, respectively. Detection of copy number variation (CNV) and selection signatures provides information on the genetic mechanisms underlying the phenotypic differences of the different sheep types. Methods: In this study, PennCNV software and F-statistics (FST) were implemented to detect CNV and selection signatures, respectively, on the X chromosome in three Chinese indigenous sheep breeds using ovine high-density 600K single nucleotide polymorphism arrays. Results: In large-tailed Han, Altay, and Tibetan sheep, respectively, a total of six, four and 22 CNV regions (CNVRs) with lengths of 1.23, 0.93, and 7.02 Mb were identified on the X chromosome. In addition, 49, 34, and 55 candidate selection regions with respective lengths of 27.49, 16.47, and 25.42 Mb were identified in large-tailed Han, Altay, and Tibetan sheep, respectively. The bioinformatics analysis results indicated several genes in these regions were associated with fat, including dehydrogenase/reductase X-linked, calcium voltage-gated channel subunit alpha1 F, and patatin like phospholipase domain containing 4. In addition, three other genes were identified from this analysis: the family with sequence similarity 58 member A gene was associated with energy metabolism, the serine/arginine-rich protein specific kinase 3 gene was associated with skeletal muscle development, and the interleukin 2 receptor subunit gamma gene was associated with the immune system. Conclusion: The results of this study indicated CNVRs and selection regions on the X chromosome of Chinese indigenous sheep contained several genes associated with various heritable traits.

쥐L6 근원세포에서 miR-128의 근육세포 분화와 인슐린신호에서의 역할 (Roles of miR-128 in Myogenic Differentiation and Insulin Signaling in Rat L6 Myoblasts)

  • 오명주;김소현;김지현;전병학
    • 생명과학회지
    • /
    • 제30권9호
    • /
    • pp.772-782
    • /
    • 2020
  • 골격근의 분화 또는 근육 분화는 근육량과 신진대사 항상성을 유지하기 위해 중요하다. 근육 특이적 microRNAs (miRNAs)는 골격근 분화에 중요한 역할을 한다. 본 연구에서는 rat miRNAs 마이크로어레이를 사용하여 rat L6 근아세포의 근육 분화 과정에서의 miRNAs 발현 양상을 조사했다. 우리는 miR-128의 발현 증가를 발견했고, 동시에 이미 알려진 근육 분화 조절 miRNAs인 miR-1, miR-133b와 mi-206의 발현 증가를 확인했다. 이 microarray 결과를 확인하기위해 우리는 Quantitative RT-PCR 기술을 사용하였고, microarray 결과와 유사하게 발현 초기 mRNAs와 발현 후 성숙 miRNAs에서 모두 miR-128의 발현 증가를 확인했다. 또한 Rat L6 근아세포로의 miR-128 발현 향상은 muscle creatine kinase (MCK), myogenin, myosin heavy chain (MHC)와 같은 근육분화 표지 유전자 발현을 유발했고, 또한 MHC의 단백질 발현을 증가시켰다. 억제 PNAs를 사용한 miR-128의 작용 억제는 이러한 근육 분화 표지 유전자들의 발현을 차단했다. 또한, miR-128 발현 향상은 Erk와 Akt 단백질의 인슐린 자극에 의한 인산화를 증가시켰고, 고인슐린혈증과 고혈당증으로 인해 유도된 인슐린 저항성으로 인한 Erk와 Akt의 억제된 인산화를 회복했다. 이러한 발견은 miR-128이 근육분화와 인슐린 작용에 중요한 역할을 할 수 있다는 것을 시사한다.