• Title/Summary/Keyword: Muscle Atrophy

Search Result 355, Processing Time 0.039 seconds

Simvastatin Induces Avian Muscle Protein Degradation through Muscle Atrophy Signaling (Simvastatin이 메추리 근육 세포에 미치는 영향)

  • JeongWoong, Park;Yu-Seung, Choi;Sarang, Choi;Sang In, Lee;Sangsu, Shin
    • Korean Journal of Poultry Science
    • /
    • v.49 no.4
    • /
    • pp.265-272
    • /
    • 2022
  • Many studies on poultry have been conducted in the poultry industry to improve their important economic traits, such as egg production, meat quality, and carcass yield. Environmental changes affect the poultry's economic traits, including muscle growth. The purpose of this study is to investigate the mechanisms by which simvastatin causes muscle injury in quail muscle cells. Following treatment with various doses of simvastatin, LD50 in the quail myoblast cells was determined using a cell viability test; cell death was caused by apoptosis and/or necrosis. Thereafter, the expression patterns of the atrophy marker genes were examined via quantitative reverse-transcription polymerase chain reaction (qRT-PCR). The results showed that the transcriptional levels of the muscle atrophy marker genes (Atrogin-1, TRIM63) and the upstream genes in their signaling cascade were increased by simvastatin treatment. This indicated that simvastatin induced myogenic cell death and muscle injury via protein degradation through muscle atrophy signaling. Further studies should focus on identifying the mechanism by which simvastatin induces the protein degradation signaling pathway in quail muscle..

Schisandrae Fructus: A Potential Candidate Functional Food Against Muscle Atrophy and Osteoarthritis Prevention

  • Lee, Seung Young;Jin, Hyun Mi;Ryu, Byung-Gon;Jung, Ji Young;Kang, Hye Kyeong;Choi, Hee Won;Choi, Kyung Min;Jeong, Jin Woo
    • Proceedings of the Plant Resources Society of Korea Conference
    • /
    • 2018.04a
    • /
    • pp.8-8
    • /
    • 2018
  • Muscle atrophy, known as a sarcopenia, is defined as a loss of muscle mass resulting from a reduction in muscle fiber area or density due to a decrease in muscle protein synthesis and an increase in protein breakdown. Many conditions are associated with muscle atrophy, such as aging, denervation, disuse, starvation, severe injury and inflammation, prolonged bed rest, glucocorticoid treatment, sepsis, cancer, and other cachectic diseases. On the other hand, osteoarthritis (OA) is the most common form of joint disease and is wide spread in the elderly population and is characterized by erosion of articular cartilage, osteophyte formation, and subchondral bone sclerosis. The cytokine network plays an important role in the development and progression of OA with the inflammatory cytokine. Schisandrae Fructus (SF) derived from the ripe fruit of Schisandra chinensis (Turcz.) Baill. (Magnoliaceae) has been extensively used in traditional herbal medicines in Asia. It was originally used as a tonic and has been traditionally used for the treatment of many uncomfortable symptoms, such as cough, dyspnea, dysentery, insomnia, and amnesia for a long time. Previous reports have shown that SF and its related compounds possess various biological activities such as antioxidant, anti-inflammatory, anticancer, anti-microbial, antiseptic, anti-aging, hepatoprotective and immunostimulating effects. However, the therapeutic effects of SF on muscle atrophy and OA has not yet been evaluated. In the present study, we aimed to determine whether extracts of SF, the dried fruit of S. chinensis, mitigates the development of muscle atrophy and OA.

  • PDF

LPS-Induced Modifications in Macrophage Transcript and Secretion Profiles Are Linked to Muscle Wasting and Glucose Intolerance

  • Heeyeon Ryu;Hyeon Hak Jeong;Seungjun Lee;Min-Kyeong Lee;Myeong-Jin Kim;Bonggi Lee
    • Journal of Microbiology and Biotechnology
    • /
    • v.34 no.2
    • /
    • pp.270-279
    • /
    • 2024
  • Macrophages are versatile immune cells that play crucial roles in tissue repair, immune defense, and the regulation of immune responses. In the context of skeletal muscle, they are vital for maintaining muscle homeostasis but macrophage-induced chronic inflammation can lead to muscle dysfunction, resulting in skeletal muscle atrophy characterized by reduced muscle mass and impaired insulin regulation and glucose uptake. Although the involvement of macrophage-secreted factors in inflammation-induced muscle atrophy is well-established, the precise intracellular signaling pathways and secretion factors affecting skeletal muscle homeostasis require further investigation. This study aimed to explore the regulation of macrophage-secreted factors and their impact on muscle atrophy and glucose metabolism. By employing RNA sequencing (RNA-seq) and proteome array, we uncovered that factors secreted by lipopolysaccharide (LPS)-stimulated macrophages upregulated markers of muscle atrophy and pro-inflammatory cytokines, while concurrently reducing glucose uptake in muscle cells. The RNA-seq analysis identified alterations in gene expression patterns associated with immune system pathways and nutrient metabolism. The utilization of gene ontology (GO) analysis and proteome array with macrophage-conditioned media revealed the involvement of macrophage-secreted cytokines and chemokines associated with muscle atrophy. These findings offer valuable insights into the regulatory mechanisms of macrophage-secreted factors and their contributions to muscle-related diseases.

Clinical Report of Oriental Medicine Treatment with Bee Venom Therapy of Progressive muscle atrophy 1 Patient (봉약침(蜂藥針)을 이용(利用)한 진행성 근위축증 환자(患者) 1례(例)에 대(對)한 증례보고(症例報告))

  • Kim, Young-Ho;Yook, Tae-Han;Song, Beom-Yong;Lee, Dong-Ho
    • Journal of Pharmacopuncture
    • /
    • v.3 no.1
    • /
    • pp.119-140
    • /
    • 2000
  • The authors reports in order to study the effect of Bee Venom therapy of progressive muscle atrophy. The authors investigated 1 patient who is treated at Woosuk University Oriental Medical Hospital. The patient diagnosed by MRI EMG Hematology Muscle biopsy as progressive muscle atrophy is administered by Bee Venom therapy for 4 months. Bee Venom therapy is operated by 2 times per a week(every 3 days, 0.1cc per one operation, 0.05cc per one acupuncture point). The authors checked changes of this patient's chief symptoms by comparing before and after Bee Venom therapy is operated at 30 times. After Bee Venom therapy, the patient increased motor power & ROM, decreased general cooling sense & swallowing disorder. As above, the authors conclude that better results can be obtained Oriental Medical Treatment with Bee Venom therapy in progressive muscle atrophy

Ameliorative Effects of Soybean Leaf Extract on Dexamethasone-Induced Muscle Atrophy in C2C12 Myotubes and a C57BL/6 Mouse Model (콩잎 추출물의 근위축 개선 효과)

  • Hye Young Choi;Young-Sool Hah;Yeong Ho Ji;Jun Young Ha;Hwan Hee Bae;Dong Yeol Lee;Won Min Jeong;Dong Kyu Jeong;Jun-Il Yoo;Sang Gon Kim
    • Journal of Life Science
    • /
    • v.33 no.12
    • /
    • pp.1036-1045
    • /
    • 2023
  • Sarcopenia, a condition characterized by the insidious loss of skeletal muscle mass and strength, represents a significant and growing healthcare challenge, impacting the mobility and quality of life of aging populations worldwide. This study investigated the therapeutic potential of soybean leaf extract (SL) for dexamethasone (Dexa)-induced muscle atrophy in vitro and in an in vivo model. In vitro experiments showed that SL significantly alleviated Dexa-induced atrophy in C2C12 myotube cells, as evidenced by preserved myotube morphology, density, and size. Moreover, SL treatment significantly reduced the mRNA and protein levels of muscle RING-finger protein-1 (MuRF1) and muscle atrophy F-box (MAFbx), key factors regulating muscle atrophy. In a Dexa-induced atrophy mouse model, SL administration significantly inhibited Dexa-induced weight loss and muscle wasting, preserving the mass of the gastrocnemius and tibialis anterior muscles. Furthermore, mice treated with SL exhibited significant improvements in muscle function compared to their counterparts suffering from Dexa-induced muscle atrophy, as evidenced by a notable increase in grip strength and extended endurance on treadmill tests. Moreover, SL suppressed the expression of muscle atrophy-related proteins in skeletal muscle, highlighting its protective role against Dexa-induced muscle atrophy. These results suggest that SL has potential as a natural treatment for muscle-wasting conditions, such as sarcopenia.

The Clinical Observation of Facial Palsy Sequela (안면신경마비 후유증에 대한 임상적 고찰)

  • 김남권
    • The Journal of Korean Medicine
    • /
    • v.23 no.1
    • /
    • pp.100-111
    • /
    • 2002
  • Objectives : In order to obtain the clinical type of facial palsy sequelae and try to make the treatment protocols for each, I observed patients who visited Gunpo-Wonkwang oriental medicine center with Bell’s palsy sequelae that were treated over three months. Methods : I make the value standard of muscle paralysis, contraction, synkinesis and acquired the results as follows. Results and Conclusions : 1. The distribution of age and sex was as follows : females of 41-50 years were the most common demographic, females of 51-60 years and males of 31-40 years were the second, males of 51-60 years were the third, females of 21-30 years and males of over 60 years were the fourth, and males of 41-50 years were the fifth. 2. The distributions of period of disease were as follows : 3-6 months was the most, 12-18 months was the second, 6-12 months and over 24 months was the third, and 18-24 months was the fourth. 3. The sequelae distributions of disease were as follows. In the group of 3-6 months, 12 persons (80%) showed palsy and atrophy, 10 persons (66.6%) showed synkinetics. In the group of over 6 months, all patients showed muscle palsy, muscle atrophy and synkinetics. All groups showed lower sensitivity of muscles, but the group of 18-24 months and the group of over 24 months showed more. Tinnitus was shown by the groups of 12-18 months and 3-6 months. Facial muscle pain was shown by the group of3-6 months only, Crocodile's tear was shown by the groups of 18-24 months and over 24 months. 4. The total palsy rates of sequela patients and palsy rates by muscle for disease period were as follows. The total palsy rate was 27.94%; the palsy rates for the group of 6-12 months and the group of over 24 months was lower than the total palsy rate. The rates of the groups of 3-6, 12-18, 18-24 months were higher than the total palsy rate. The palsy rate of zygomatic minor, levator labii superior muscle was higher than the total palsy rate for all groups. 5. Synkinetics manifestation rates by disease period were as follows. Total synkinetics manifestation rate was 73.81 %; the manifestation rate of the group of 6-12 months was lower than total synkinetics manifestation rate. For the groups of 12-18, 18-24, and over 24 months it was more than the total synkinetics manifestation rate. The group of over 24 months, total synkinetics induced by orbicularis oculi muscle and orbicularis oris muscle. 6. Facial muscle atrophy rates by disease period were as follows. Total atrophy rate was 5.26%; in the groups of 6-12, 18-24, over 24 months, the atrophy rates were higher than the total atrophy rate. The groups of 3-6 and 12-18 months showed lower than the total atrophy rates, while the atrophy of the levator palpebrae superioris muscle and levator palpebrae inferioris muscle was higher than in other groups.

  • PDF

Gromwell (Lithospermum erythrorhizon) Attenuates High-Fat-Induced Skeletal Muscle Wasting by Increasing Protein Synthesis and Mitochondrial Biogenesis

  • Ji-Sun Kim;Hyunjung Lee;Ahyoung Yoo;Hang Yeon Jeong;Chang Hwa Jung;Jiyun Ahn;Tae-Youl Ha
    • Journal of Microbiology and Biotechnology
    • /
    • v.34 no.3
    • /
    • pp.495-505
    • /
    • 2024
  • Gromwell (Lithospermum erythrorhizon, LE) can mitigate obesity-induced skeletal muscle atrophy in C2C12 myotubes and high-fat diet (HFD)-induced obese mice. The purpose of this study was to investigate the anti-skeletal muscle atrophy effects of LE and the underlying molecular mechanism. C2C12 myotubes were pretreated with LE or shikonin, and active component of LE, for 24 h and then treated with 500 μM palmitic acid (PA) for an additional 24 h. Additionally, mice were fed a HFD for 8 weeks to induced obesity, and then fed either the same diet or a version containing 0.25% LE for 10 weeks. LE attenuated PA-induced myotubes atrophy in differentiated C2C12 myotubes. The supplementation of LE to obese mice significantly increased skeletal muscle weight, lean body mass, muscle strength, and exercise performance compared with those in the HFD group. LE supplementation not only suppressed obesity-induced skeletal muscle lipid accumulation, but also downregulated TNF-α and atrophic genes. LE increased protein synthesis in the skeletal muscle via the mTOR pathway. We observed LE induced increase of mitochondrial biogenesis and upregulation of oxidative phosphorylation related genes in the skeletal muscles. Furthermore, LE increased the expression of peroxisome proliferator-activated receptor-gamma coactivator-1 alpha and the phosphorylation of adenosine monophosphate-activated protein kinase. Collectively, LE may be useful in ameliorating the detrimental effects of obesity-induced skeletal muscle atrophy through the increase of protein synthesis and mitochondrial biogenesis of skeletal muscle.

Scoring System for Factors Affecting Aggravation of Lumbar Disc Herniation

  • Lee, Sung Wook;Kim, Sang Yoon;Lee, Jee Young
    • Investigative Magnetic Resonance Imaging
    • /
    • v.22 no.1
    • /
    • pp.18-25
    • /
    • 2018
  • Purpose: To investigate the various imaging factors associated with aggravation of lumbar disc herniation (LDH) and develop a scoring system for prediction of LDH aggravation. Materials and Methods: From 2015 to 2017, we retrospectively reviewed the magnetic resonance imaging (MRI) findings of 60 patients (30 patients with aggravated LDH and 30 patients without any altered LDH). Imaging factors for MRI evaluation included the level of LDH, disc degeneration, back muscle atrophy, facet joint degeneration, ligamentum flavum thickness and interspinous ligament degeneration. Flexion-extension difference was measured with simple radiography. The scoring system was analyzed using receiver operating characteristic (ROC) analysis. Results: The aggravated group manifested a higher grade of disc degeneration, back muscle atrophy and facet degeneration than the control group. The ligamentum flavum thickness in the aggravated group was thicker than in the group with unaltered LDH. The summation score was defined as the sum of the grade of disc degeneration, back muscle atrophy and facet joint degeneration. The area under the ROC curve showing the threshold value of the summation score for prediction of aggravation of LDH was 0.832 and the threshold value corresponded to 6.5. Conclusion: Disc degeneration, facet degeneration, back muscle atrophy and ligamentum flavum thickness are important factors in predicting aggravation of LDH and may facilitate the determination of treatment strategy in patients with LDH. The summation score is available as supplemental data.

A Mixture of Morus alba and Angelica keiskei Leaf Extracts Improves Muscle Atrophy by Activating the PI3K/Akt/mTOR Signaling Pathway and Inhibiting FoxO3a In Vitro and In Vivo

  • Hyun Hwangbo;Min Yeong Kim;Seon Yeong Ji;Da Hye Kim;Beom Su Park;Seong Un Jeong;Jae Hyun Yoon;Tae Hee Kim;Gi-Young Kim;Yung Hyun Choi
    • Journal of Microbiology and Biotechnology
    • /
    • v.33 no.12
    • /
    • pp.1635-1647
    • /
    • 2023
  • Muscle atrophy, which is defined as a decrease in muscle mass and strength, is caused by an imbalance between the anabolism and catabolism of muscle proteins. Thus, modulating the homeostasis between muscle protein synthesis and degradation represents an efficient treatment approach for this condition. In the present study, the protective effects against muscle atrophy of ethanol extracts of Morus alba L. (MA) and Angelica keiskei Koidz. (AK) leaves and their mixtures (MIX) were evaluated in vitro and in vivo. Our results showed that MIX increased 5-aminoimidazole-4-carboxamide ribonucleotide-induced C2C12 myotube thinning, and enhanced soleus and gastrocnemius muscle thickness compared to each extract alone in dexamethasone-induced muscle atrophy Sprague Dawley rats. In addition, although MA and AK substantially improved grip strength and histological changes for dexamethasone-induced muscle atrophy in vivo, the efficacy was superior in the MIX-treated group. Moreover, MIX further increased the expression levels of myogenic factors (MyoD and myogenin) and decreased the expression levels of E3 ubiquitin ligases (atrogin-1 and muscle-specific RING finger protein-1) in vitro and in vivo compared to the MA- and AK-alone treatment groups. Furthermore, MIX increased the levels of phosphorylated phosphoinositide 3-kinase (PI3K), protein kinase B (Akt), and mammalian target of rapamycin (mTOR) that were reduced by dexamethasone, and downregulated the expression of forkhead box O3 (FoxO3a) induced by dexamethasone. These results suggest that MIX has a protective effect against muscle atrophy by enhancing muscle protein anabolism through the activation of the PI3K/Akt/mTOR signaling pathway and attenuating catabolism through the inhibition of FoxO3a.

Effects of glucoraphanin in dexamethasone-induced skeletal muscle atrophy in vitro model (Dexamethasone으로 유도된 근위축 세포모델에서 glucoraphanin의 효과)

  • Jeon, Sang Kyu;Kim, Ok Hyeon;Park, Su Mi;Lee, Ju-Hee;Park, Sun-Dong
    • Herbal Formula Science
    • /
    • v.28 no.1
    • /
    • pp.29-39
    • /
    • 2020
  • Objectives : Glucoraphanin is one of the well-known natural glucosinolates found in cruciferous plants. In the present study, we investigated the effects and molecular mechanism of glucoraphanin in dexamethasone-induced skeletal muscle atrophy in vitro model. Methods : The cytotoxic effects of glucoraphanin on C2C12 myoblasts or myotubes were evaluated by MTT assay. The glucoraphanin was evaluated effects in dexamethasone-induced skeletal muscle atrophy in C2C12 myotubes using a real-time PCR, western blots analysis, and immunofluorescence staining of myosin heavy chain. Result : Glucoraphanin had no cytotoxicity on both C2C12 myoblasts or myotubes. Dexamethasone markedly induced muscle atrophy by up-regulating muscle-specific ubiquitin E3 ligase markers, atrogin-1 and MuRF1, and down-regulating MyoD, a myogenic regulatory factor whereas co-treatment of glucoraphanin and dexamethasone dose-dependently inhibited it. Furthermore, decreased expressions of p-Akt, p-FOXO1, and p-FOXO3a induced by dexamethasone were reversed by co-treatment with glucoraphanin and dexamethasone. In addition, dexamethasone obviously reduced myotube diameters, while co-treatment of glucoraphanin and dexamethasone increased those to a similar level as control. Conclusions : These results show that glucoraphanin suppresses dexamethasone-induced muscle atrophy in C2C12 myotubes through activation of Akt/FOXO signaling pathway.